G4-AntiBac | Targeting G-quadruplex DNA Structures in Bacteria to Combat Antimicrobial Resistance

Summary
There is a pressing need to develop new antimicrobial approaches to combat bacterial resistance to antibiotics. Pseudomonas aeruginosa – a dreadful Gram-negative bacterium pathogen associated with severe acute and chronic human diseases – is responsible for 10-15 % of hospital-acquired infections worldwide. Thus, it is important to identify new biomolecular targets in bacteria and design new molecules that can selectively target them. This project aims to study G-quadruplex DNA (G4 DNA) structures as a new bio-molecular target for the development of new classes of antibiotics. G4 DNA is a non-canonical structure of DNA whose formation has been associated to a number of important biological processes. While the function of G4 DNA is well established in eukaryotic cells, far less is known about their functions in bacteria. Preliminary data from the host group has shown that G4 DNA’s can form in gene promoter regions of the genome in P. aeruginosa. They have also shown that metal complexes can bind to this G4 DNA regions and display antibacterial activity. In this project, I propose to develop novel compounds (via a ‘target-guided synthesis’ approach) that can specifically bind with high affinity to G4 DNA structures of relevance to bacteria. If the newly developed bacterial G4 DNA binders exhibit low cellular uptake, I propose to implement the well-established liposomal delivery strategies to improve their uptake into the targeted bacterial strains. Finally, the highly active compounds will be used to study the proposed gene regulatory role that G-quadruplexes play in P. aeruginosa. My proposed research falls under one of the key priorities (i.e. Infectious diseases and improving global health) of the Horizon-2020 work programme. The outcome of the proposed study will have impact in addressing one of the key objectives (i.e. Develop New Therapeutics and Alternatives) of the recently documented ‘European One Health Action Plan against Antimicrobial Resistance’.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/890441
Start date: 06-04-2021
End date: 05-04-2023
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

There is a pressing need to develop new antimicrobial approaches to combat bacterial resistance to antibiotics. Pseudomonas aeruginosa – a dreadful Gram-negative bacterium pathogen associated with severe acute and chronic human diseases – is responsible for 10-15 % of hospital-acquired infections worldwide. Thus, it is important to identify new biomolecular targets in bacteria and design new molecules that can selectively target them. This project aims to study G-quadruplex DNA (G4 DNA) structures as a new bio-molecular target for the development of new classes of antibiotics. G4 DNA is a non-canonical structure of DNA whose formation has been associated to a number of important biological processes. While the function of G4 DNA is well established in eukaryotic cells, far less is known about their functions in bacteria. Preliminary data from the host group has shown that G4 DNA’s can form in gene promoter regions of the genome in P. aeruginosa. They have also shown that metal complexes can bind to this G4 DNA regions and display antibacterial activity. In this project, I propose to develop novel compounds (via a ‘target-guided synthesis’ approach) that can specifically bind with high affinity to G4 DNA structures of relevance to bacteria. If the newly developed bacterial G4 DNA binders exhibit low cellular uptake, I propose to implement the well-established liposomal delivery strategies to improve their uptake into the targeted bacterial strains. Finally, the highly active compounds will be used to study the proposed gene regulatory role that G-quadruplexes play in P. aeruginosa. My proposed research falls under one of the key priorities (i.e. Infectious diseases and improving global health) of the Horizon-2020 work programme. The outcome of the proposed study will have impact in addressing one of the key objectives (i.e. Develop New Therapeutics and Alternatives) of the recently documented ‘European One Health Action Plan against Antimicrobial Resistance’.

Status

TERMINATED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019