EUsoil-C-FLUX | Impact of climate warming on soil exoenzyme kinetic properties and their role in forecasting carbon flux

Summary
The majority of the Earth’s terrestrial carbon (C) is stored in the soil as organic carbon, at quantities more than three times the size of the atmospheric carbon pool. Response of this vast reservoir of C to climate change is highly uncertain and changes may alter multiple soil ecosystem services such as climate regulation, food production and water purification. Soil microorganisms drive the decomposition of soil organic C and determine C losses from soils to the atmosphere through soil respiration (Rsoil). To date, no consensus has been reached on the direction or magnitude of Rsoil responses to climate change with contrasting results and conflicting theory making future predictions unreliable. Up to now, research into rising temperature respiratory responses has focussed on substrate depletion mechanisms and metabolic adjustments, with little attention being paid to the importance of change in exoenzyme kinetic properties. Bringing together state of the art measurements from different rarely combined disciplines, this EUsoil-C-FLUX project will focus on soil exoenzyme thermal adaptation to unravel new mechanisms of Rsoil response to climate warming at the European scale. To this end, this project proposes to (i) determine the local adaptation of soil exoenzyme kinetic properties across Europe, from Greece to Iceland in three major habitats (grassland, forest and peatland); (ii) impose a controlled warming experient on these soils in a unique world leading research facility (the European Ecotron of Montpellier); (iii) use cutting edge and interdisciplineray technology (isotope labelling, high throughput DNA sequencing, radio carbon dating) to provide a detailed mechanistic understanding of Rsoil responses to warming; and finally (iv) incorporate the new findings into the latest mechanistic C models to better predict Rsoil response to climate change, a prerequisite to fulfill a key priority of the European Union in reducing greenhouse gas emissions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/892654
Start date: 01-09-2020
End date: 31-08-2022
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

The majority of the Earth’s terrestrial carbon (C) is stored in the soil as organic carbon, at quantities more than three times the size of the atmospheric carbon pool. Response of this vast reservoir of C to climate change is highly uncertain and changes may alter multiple soil ecosystem services such as climate regulation, food production and water purification. Soil microorganisms drive the decomposition of soil organic C and determine C losses from soils to the atmosphere through soil respiration (Rsoil). To date, no consensus has been reached on the direction or magnitude of Rsoil responses to climate change with contrasting results and conflicting theory making future predictions unreliable. Up to now, research into rising temperature respiratory responses has focussed on substrate depletion mechanisms and metabolic adjustments, with little attention being paid to the importance of change in exoenzyme kinetic properties. Bringing together state of the art measurements from different rarely combined disciplines, this EUsoil-C-FLUX project will focus on soil exoenzyme thermal adaptation to unravel new mechanisms of Rsoil response to climate warming at the European scale. To this end, this project proposes to (i) determine the local adaptation of soil exoenzyme kinetic properties across Europe, from Greece to Iceland in three major habitats (grassland, forest and peatland); (ii) impose a controlled warming experient on these soils in a unique world leading research facility (the European Ecotron of Montpellier); (iii) use cutting edge and interdisciplineray technology (isotope labelling, high throughput DNA sequencing, radio carbon dating) to provide a detailed mechanistic understanding of Rsoil responses to warming; and finally (iv) incorporate the new findings into the latest mechanistic C models to better predict Rsoil response to climate change, a prerequisite to fulfill a key priority of the European Union in reducing greenhouse gas emissions.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019