RLOOP-AS | Interconnection between R-loops and co-transcriptional alternative splicing

Summary
R-loops are long RNA/DNA hybrids naturally formed behind RNA polymerase II (Pol II) during transcription, but their persistence is a threat for genome integrity through the creation of DNA damage, leading to cancer development. However, several recent studies reported a new and exciting role for R-loops in gene expression regulation by influencing transcription termination and chromatin modification.
As mutations in several RNA processing factors have been shown to stabilize R-loop formation, we propose here to investigate the link between R-loops and co-transcriptional alternative splicing (AS) and to decipher the underlying mechanisms, a hypothesis supported by our preliminary results identifying more than 3000 splice junctions affected by decreased R-loops upon overexpression of RNase H1. The use of a specific antibody to RNA/DNA hybrids and stabilization/removal of R-loops coupled to high-throughput analysis of splicing (RNA-seq), R-loop profiling (DRIP-seq) and Pol II positioning and measurements (PRO-seq) will allow us to investigate genome-wide regulation of AS by R-loop formation. We will use particular AS events as models to elucidate the molecular mechanisms interconnecting R-loops and AS. Moreover, based on our previous expertise, we plan to study the impact of R-loops on DNA damage-induced AS alteration as a model of physiological regulation of AS by R-loops.
This project will provide new insights on AS regulation through the formation of R-loops and also on cancer progression through R-loop stabilization. Finally, this project will allow me to acquire independent thinking and scientific leadership to reach an independent academic position in France.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/661051
Start date: 01-07-2015
End date: 30-06-2017
Total budget - Public funding: 170 121,60 Euro - 170 121,00 Euro
Cordis data

Original description

R-loops are long RNA/DNA hybrids naturally formed behind RNA polymerase II (Pol II) during transcription, but their persistence is a threat for genome integrity through the creation of DNA damage, leading to cancer development. However, several recent studies reported a new and exciting role for R-loops in gene expression regulation by influencing transcription termination and chromatin modification.
As mutations in several RNA processing factors have been shown to stabilize R-loop formation, we propose here to investigate the link between R-loops and co-transcriptional alternative splicing (AS) and to decipher the underlying mechanisms, a hypothesis supported by our preliminary results identifying more than 3000 splice junctions affected by decreased R-loops upon overexpression of RNase H1. The use of a specific antibody to RNA/DNA hybrids and stabilization/removal of R-loops coupled to high-throughput analysis of splicing (RNA-seq), R-loop profiling (DRIP-seq) and Pol II positioning and measurements (PRO-seq) will allow us to investigate genome-wide regulation of AS by R-loop formation. We will use particular AS events as models to elucidate the molecular mechanisms interconnecting R-loops and AS. Moreover, based on our previous expertise, we plan to study the impact of R-loops on DNA damage-induced AS alteration as a model of physiological regulation of AS by R-loops.
This project will provide new insights on AS regulation through the formation of R-loops and also on cancer progression through R-loop stabilization. Finally, this project will allow me to acquire independent thinking and scientific leadership to reach an independent academic position in France.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)