FIT-SEP | Fully integrated technology for predictive diagnosis of sepsis

Summary
This proposal features a novel and inexpensive, plug-and-play ultrasensitive immune-PCR fully integrated system (lab-on-chip) that will help with early diagnosis of sepsis or toxic shock syndrome caused by pathogenic bacteria Saphylococcus aureus and Streptococcus pyogenes. Sepsis kills 5.1 millions of people annually; it has up to 26% mortality and rapid progression. S. aureus and S. pyogenes colonise ~50% healthy individuals, and cause common diseases such as tonsillitis, skin and deep tissue or medical implant infection, which sometimes progress to sepsis. Biomarkers that predict of S. aureus and S. pyogenes-caused sepsis are bacterial toxins, superantigens. S. aureus causes most deaths from infectious diseases in high-income countries. This situation is exacerbated by spread of multiple antibiotic resistant S. aureus (MRSA) in the community and hospitals.
Superantigens are commonly found in the serum in the absence of bacteremia. It is hence not appropriate to detect them by PCR of the toxin-coding DNA sequences. The key to our innovation is detection of superantigen protein using novel DNA-containing detector nanorods. Binding of the detector particles to the analyte will be quantified via the nanorod DNA. This strategy (immune-PCR) combines immunodetection with sensitivity of PCR to achieve ultrasensitive detection.
The system devised in this action will be a prototype for a novel class of devices for ultrasensitive detection of wide array of molecules, including explosives, hormones, or chemical pollutants. The affordable all-in-one plug and play design will allow use in the general practitioner’s office (point of care), at home, or even in the war zones or disaster areas.
Development of fully integrated point-of-care lab-on-chip prototype will require multidisciplinary effort where ER’s novel detector nanorods will be combined with the Eden’s expertise in design and engineering of microfluidic systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/843699
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

This proposal features a novel and inexpensive, plug-and-play ultrasensitive immune-PCR fully integrated system (lab-on-chip) that will help with early diagnosis of sepsis or toxic shock syndrome caused by pathogenic bacteria Saphylococcus aureus and Streptococcus pyogenes. Sepsis kills 5.1 millions of people annually; it has up to 26% mortality and rapid progression. S. aureus and S. pyogenes colonise ~50% healthy individuals, and cause common diseases such as tonsillitis, skin and deep tissue or medical implant infection, which sometimes progress to sepsis. Biomarkers that predict of S. aureus and S. pyogenes-caused sepsis are bacterial toxins, superantigens. S. aureus causes most deaths from infectious diseases in high-income countries. This situation is exacerbated by spread of multiple antibiotic resistant S. aureus (MRSA) in the community and hospitals.
Superantigens are commonly found in the serum in the absence of bacteremia. It is hence not appropriate to detect them by PCR of the toxin-coding DNA sequences. The key to our innovation is detection of superantigen protein using novel DNA-containing detector nanorods. Binding of the detector particles to the analyte will be quantified via the nanorod DNA. This strategy (immune-PCR) combines immunodetection with sensitivity of PCR to achieve ultrasensitive detection.
The system devised in this action will be a prototype for a novel class of devices for ultrasensitive detection of wide array of molecules, including explosives, hormones, or chemical pollutants. The affordable all-in-one plug and play design will allow use in the general practitioner’s office (point of care), at home, or even in the war zones or disaster areas.
Development of fully integrated point-of-care lab-on-chip prototype will require multidisciplinary effort where ER’s novel detector nanorods will be combined with the Eden’s expertise in design and engineering of microfluidic systems.

Status

TERMINATED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018