Summary
The conversion of chemical energy into translational and rotational movement at the molecular level enables biological motors to perform and control a wide variety of complex functions. ‘Read-out’ tasks are essential for life as these processes can translate information from DNA to RNA and from RNA to encode proteins.
The ‘ReadingMachine’ project aims to design, construct and investigate chemically fuelled linear molecular machines capable of active transport of cargo, the read-out information and other sophisticated tasks. Specifically, I will develop [2]rotaxane-based molecular machines for information storage and read-out. I will first investigate the rational design of an orthogonal gating system on the track to allow for the unidirectional transportation of a macrocycle through the track by fuelled acid-base oscillations. By recognition of the chiral information of each station it docks at, the macrocycle will be able to report its position through a unique CD signal output. Harnessing the unidirectional motion of the macrocycle on the track, sequential information of the track will be non-destructive read-out by a series of CD outputs. Furthermore, the information that the macrocycle is reading will change the conformation of the macrocycle. As a result, the reading process will enable the molecular machine to be a 'smart' catalyst for enantioselective synthesis according to the signal it reads.
The controlled information storage and read-out process on molecular-level through a fuelled non-destructive reading machine is a tremendous challenge that could lead us towards the dawn of an era of useful molecular nanotechnology, for example ‘re-storage’ and ‘replication’ of stored information, and ultimately point the way for the use of such molecular machines to write (i.e. synthesize) sequence information as it is reading from the track.
The ‘ReadingMachine’ project aims to design, construct and investigate chemically fuelled linear molecular machines capable of active transport of cargo, the read-out information and other sophisticated tasks. Specifically, I will develop [2]rotaxane-based molecular machines for information storage and read-out. I will first investigate the rational design of an orthogonal gating system on the track to allow for the unidirectional transportation of a macrocycle through the track by fuelled acid-base oscillations. By recognition of the chiral information of each station it docks at, the macrocycle will be able to report its position through a unique CD signal output. Harnessing the unidirectional motion of the macrocycle on the track, sequential information of the track will be non-destructive read-out by a series of CD outputs. Furthermore, the information that the macrocycle is reading will change the conformation of the macrocycle. As a result, the reading process will enable the molecular machine to be a 'smart' catalyst for enantioselective synthesis according to the signal it reads.
The controlled information storage and read-out process on molecular-level through a fuelled non-destructive reading machine is a tremendous challenge that could lead us towards the dawn of an era of useful molecular nanotechnology, for example ‘re-storage’ and ‘replication’ of stored information, and ultimately point the way for the use of such molecular machines to write (i.e. synthesize) sequence information as it is reading from the track.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/892035 |
Start date: | 01-05-2020 |
End date: | 30-04-2022 |
Total budget - Public funding: | 212 933,76 Euro - 212 933,00 Euro |
Cordis data
Original description
The conversion of chemical energy into translational and rotational movement at the molecular level enables biological motors to perform and control a wide variety of complex functions. ‘Read-out’ tasks are essential for life as these processes can translate information from DNA to RNA and from RNA to encode proteins.The ‘ReadingMachine’ project aims to design, construct and investigate chemically fuelled linear molecular machines capable of active transport of cargo, the read-out information and other sophisticated tasks. Specifically, I will develop [2]rotaxane-based molecular machines for information storage and read-out. I will first investigate the rational design of an orthogonal gating system on the track to allow for the unidirectional transportation of a macrocycle through the track by fuelled acid-base oscillations. By recognition of the chiral information of each station it docks at, the macrocycle will be able to report its position through a unique CD signal output. Harnessing the unidirectional motion of the macrocycle on the track, sequential information of the track will be non-destructive read-out by a series of CD outputs. Furthermore, the information that the macrocycle is reading will change the conformation of the macrocycle. As a result, the reading process will enable the molecular machine to be a 'smart' catalyst for enantioselective synthesis according to the signal it reads.
The controlled information storage and read-out process on molecular-level through a fuelled non-destructive reading machine is a tremendous challenge that could lead us towards the dawn of an era of useful molecular nanotechnology, for example ‘re-storage’ and ‘replication’ of stored information, and ultimately point the way for the use of such molecular machines to write (i.e. synthesize) sequence information as it is reading from the track.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)