DISPMIC | Dispersal limitation and colonization of new land by symbiotic microorganisms

Summary
Understanding how biological communities assembles and maintains is continuously one of the key questions in ecology and, in view of the global biodiversity crisis, now more relevant than ever. Novel trait-based approaches are key tools to explain processes that lead species to coexist. The advantage of this new theoretical framework is the use of functional characteristics of species, instead of a mere species abundance accounting, to describe the emerging ecosystem properties. However, contrary to the wide use in plant ecology, its use in microbial ecology is very scarce. The objective of the proposed project is to apply a trait-based approach in combination with molecular techniques to trace the nature of ecological processes governing dispersal and establishment of arbuscular mycorrhizal (AM) fungal communities, the most common and widespread plant symbionts. This fungal group plays an important role in ecosystems and is commonly used as model organisms in ecological studies.
Natural newly emerged island systems in the coast of Denmark provide a unique temporal and isolation gradient, yet hitherto unexploited, to explore such ecological processes. Using the combined molecular and trait-based characterization of AM fungal communities, we will infer whether stochastic, i.e. random, or deterministic ecological processes are driving the fungal community assembly during dispersal and the subsequent succession. Answering these questions will be very valuable inputs into both basic ecological sciences due to the novelty of the theoretical and practical approach as well as for applied conservation biology. Getting knowledge on dispersal and establishment of organisms is crucial to infer ecological consequences of the Global Change, for example regarding the migration of species.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/708530
Start date: 01-09-2016
End date: 31-08-2018
Total budget - Public funding: 212 194,80 Euro - 212 194,00 Euro
Cordis data

Original description

Understanding how biological communities assembles and maintains is continuously one of the key questions in ecology and, in view of the global biodiversity crisis, now more relevant than ever. Novel trait-based approaches are key tools to explain processes that lead species to coexist. The advantage of this new theoretical framework is the use of functional characteristics of species, instead of a mere species abundance accounting, to describe the emerging ecosystem properties. However, contrary to the wide use in plant ecology, its use in microbial ecology is very scarce. The objective of the proposed project is to apply a trait-based approach in combination with molecular techniques to trace the nature of ecological processes governing dispersal and establishment of arbuscular mycorrhizal (AM) fungal communities, the most common and widespread plant symbionts. This fungal group plays an important role in ecosystems and is commonly used as model organisms in ecological studies.
Natural newly emerged island systems in the coast of Denmark provide a unique temporal and isolation gradient, yet hitherto unexploited, to explore such ecological processes. Using the combined molecular and trait-based characterization of AM fungal communities, we will infer whether stochastic, i.e. random, or deterministic ecological processes are driving the fungal community assembly during dispersal and the subsequent succession. Answering these questions will be very valuable inputs into both basic ecological sciences due to the novelty of the theoretical and practical approach as well as for applied conservation biology. Getting knowledge on dispersal and establishment of organisms is crucial to infer ecological consequences of the Global Change, for example regarding the migration of species.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)