INTEGRATE | Interdisciplinary Training Network for Validation of Gram-Negative Antibacterial Targets

Summary
Antimicrobial resistance is posing a continuously-rising threat to global health. Indeed, one key recommendation from the recent “Action plan against the rising threats from Antimicrobial Resistance” report (submitted by the Commission to the European Parliament and Council (15.11.2011)) is the development of effective antimicrobials or alternatives for treatment of human and animal infections. The INTEGRATE project is a direct response to this. We have assembled a team of 10 beneficiaries from eight EU member states, encompassing both academic and non-academic sectors and different disciplines, to form a consortium committed to training Early Stage Researchers (ESRs) in the discovery and preclinical validation of novel Gram-negative antibacterial agents and antibacterial targets. The principle aim of the consortium is to provide a training platform where students are exposed to every aspect of the antimicrobial discovery process, ranging from target identification and validation, through organic synthesis, in silico design and compound screening, to mode-of-action and possible resistance mechanisms. This exposure will be accomplished through a concrete secondment plan, coupled with a series of high-level consortium-wide training events and networking programmes. Our intention is to reverse the current fragmentation of approaches towards antibacterial discovery through mutual cooperation. The INTEGRATE training framework is built on an innovative research project aimed at targeting important but non-essential gene products as an effective means of reducing bacterial fitness, thereby facilitating clearance of the pathogen by the host immune system. To achieve this, the individual work programmes have been designed to seamlessly inter-mesh contributions from the fields of in silico design, organic synthesis, molecular biology and biochemistry, and the very latest in vitro and in vivo screening technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/642620
Start date: 01-01-2015
End date: 31-12-2018
Total budget - Public funding: 2 793 330,72 Euro - 2 793 330,00 Euro
Cordis data

Original description

Antimicrobial resistance is posing a continuously-rising threat to global health. Indeed, one key recommendation from the recent “Action plan against the rising threats from Antimicrobial Resistance” report (submitted by the Commission to the European Parliament and Council (15.11.2011)) is the development of effective antimicrobials or alternatives for treatment of human and animal infections. The INTEGRATE project is a direct response to this. We have assembled a team of 10 beneficiaries from eight EU member states, encompassing both academic and non-academic sectors and different disciplines, to form a consortium committed to training Early Stage Researchers (ESRs) in the discovery and preclinical validation of novel Gram-negative antibacterial agents and antibacterial targets. The principle aim of the consortium is to provide a training platform where students are exposed to every aspect of the antimicrobial discovery process, ranging from target identification and validation, through organic synthesis, in silico design and compound screening, to mode-of-action and possible resistance mechanisms. This exposure will be accomplished through a concrete secondment plan, coupled with a series of high-level consortium-wide training events and networking programmes. Our intention is to reverse the current fragmentation of approaches towards antibacterial discovery through mutual cooperation. The INTEGRATE training framework is built on an innovative research project aimed at targeting important but non-essential gene products as an effective means of reducing bacterial fitness, thereby facilitating clearance of the pathogen by the host immune system. To achieve this, the individual work programmes have been designed to seamlessly inter-mesh contributions from the fields of in silico design, organic synthesis, molecular biology and biochemistry, and the very latest in vitro and in vivo screening technologies.

Status

CLOSED

Call topic

MSCA-ITN-2014-ETN

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2014
MSCA-ITN-2014-ETN Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN)