3D-ADAPT | Analysis of tridimensional changes caused by type 2 Diabetes-Associated varianTs

Summary
Despite the worldwide growing incidence of type-two diabetes (T2D), the molecular mechanisms are largely unknown. Genome Wide Association Studies (GWAS) have identified dozens of loci harbouring common SNPs that affect T2D susceptibility. The host lab recently showed that many associated SNPs lie in clusters of islet-specific regulatory elements that form tridimensional chromatin structures in the nucleus. This project aims to evaluate how common genetic variation could impact the tridimensional chromatin structure and transcriptional activity at the level of broad regulatory domains, and ultimately assess its influence on T2D risk. To this end, allele-specific chromosome conformation capture maps will be developed and analysed together with existing reference regulatory datasets of expression profiles, histone modification marks and transcription factor occupancy in human islets. To further define the function of allele-specific interactions, genetic modification experiments will be carried out on selected disease-relevant regulatory elements. These studies can shed novel insights on how common sequence variation contributes to T2D susceptibility and can lead to the identification of novel non-coding functional variants.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/658145
Start date: 01-06-2015
End date: 31-05-2017
Total budget - Public funding: 158 121,60 Euro - 158 121,00 Euro
Cordis data

Original description

Despite the worldwide growing incidence of type-two diabetes (T2D), the molecular mechanisms are largely unknown. Genome Wide Association Studies (GWAS) have identified dozens of loci harbouring common SNPs that affect T2D susceptibility. The host lab recently showed that many associated SNPs lie in clusters of islet-specific regulatory elements that form tridimensional chromatin structures in the nucleus. This project aims to evaluate how common genetic variation could impact the tridimensional chromatin structure and transcriptional activity at the level of broad regulatory domains, and ultimately assess its influence on T2D risk. To this end, allele-specific chromosome conformation capture maps will be developed and analysed together with existing reference regulatory datasets of expression profiles, histone modification marks and transcription factor occupancy in human islets. To further define the function of allele-specific interactions, genetic modification experiments will be carried out on selected disease-relevant regulatory elements. These studies can shed novel insights on how common sequence variation contributes to T2D susceptibility and can lead to the identification of novel non-coding functional variants.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)