MisterCHROM | Modelling sister chromatids cohesion

Summary
The proposed project aims at modeling the structure and mechanisms of sister chromatids cohesion, and how it coordinates with intra-chromatid organization to shape replicated human chromosomes and support fundamental biological mechanisms. Indeed, sister chromatids organisation and its contribution to cellular functions remained elusive due to the lack of appropriate techniques able to distinguish the identical sequences of sister chromatids. The recent development of sister-chromatid-sensitive Hi-C (scsHi-C) technique by Gerlich's group at the host institution enables, for the first time, genome-wide analysis of sister chromatids interactions. These data now require theoretical models based on general physical principles to understand the complex scsHi-C contact patterns and the mechanisms underlying the formation and maintenance of sister chromatids cohesion. I will use coarse-grained polymer simulations and analytical calculations to: (i) unravel the structural and statistical features of sister chromatids organisation, e.g. how cohesive linkages distribute on the genome and the relative impact on sister chromatids conformation and alignment; (ii) understand the interplay of cohesion with dynamic intra-chromatid loops and TADs formation; (iii) predict outcomes of system perturbations on chromosome conformations and functional implications in processes such as gene expression, mitotic chromosome organisation, and DNA repair. Because the topology of sister chromatids is uncharted territory, whatever new knowledge is gained by the modeling approach proposed in this highly innovative study will constitute important contributions to long-standing open questions in the field, and will outline pathways towards new directions to pursue in future research. Given the relevance for various physiological processes, the outcomes of this project will be highly relevant for biologists from various fields, as well as biophysicist. The opportunity and the timing are thus unique.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101033347
Start date: 01-09-2022
End date: 31-08-2024
Total budget - Public funding: 174 167,04 Euro - 174 167,00 Euro
Cordis data

Original description

The proposed project aims at modeling the structure and mechanisms of sister chromatids cohesion, and how it coordinates with intra-chromatid organization to shape replicated human chromosomes and support fundamental biological mechanisms. Indeed, sister chromatids organisation and its contribution to cellular functions remained elusive due to the lack of appropriate techniques able to distinguish the identical sequences of sister chromatids. The recent development of sister-chromatid-sensitive Hi-C (scsHi-C) technique by Gerlich's group at the host institution enables, for the first time, genome-wide analysis of sister chromatids interactions. These data now require theoretical models based on general physical principles to understand the complex scsHi-C contact patterns and the mechanisms underlying the formation and maintenance of sister chromatids cohesion. I will use coarse-grained polymer simulations and analytical calculations to: (i) unravel the structural and statistical features of sister chromatids organisation, e.g. how cohesive linkages distribute on the genome and the relative impact on sister chromatids conformation and alignment; (ii) understand the interplay of cohesion with dynamic intra-chromatid loops and TADs formation; (iii) predict outcomes of system perturbations on chromosome conformations and functional implications in processes such as gene expression, mitotic chromosome organisation, and DNA repair. Because the topology of sister chromatids is uncharted territory, whatever new knowledge is gained by the modeling approach proposed in this highly innovative study will constitute important contributions to long-standing open questions in the field, and will outline pathways towards new directions to pursue in future research. Given the relevance for various physiological processes, the outcomes of this project will be highly relevant for biologists from various fields, as well as biophysicist. The opportunity and the timing are thus unique.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships