SMI REP | Investigating eukaryotic replisome dynamics at the single molecule level

Summary
For cells to reproduce, an accurate duplicate of the genome must be created. This is no small task. The genetic information stored in each cell consists of ~6 billion pairs of nucleobases (base pairs, bp) assembled as a polymer 2 metres long and 2 nanometres in diameter, with the structural form of a double helix. For a mammalian cell to divide, this deoxyribonucleic acid (DNA) must be copied in a time frame on the order of 1 day, or ~70,000bp a second. DNA replication is common to all 3 domains of life, bacteria, archaea and eukarya and is accomplished by a complex of proteins. This proposal brings together a researcher of great proficiency in single molecule methods and multidisciplinary research with the Single Molecule Imaging group at the London Research Institute, one of the world leading centres in DNA replication. Combined, we will build unique instruments and develop single molecule assays to understand the molecular gymnastics of DNA replication in eukaryotes. We will elucidate rates of DNA unwinding by eukaryotic helicases and establish enhancements by association with other proteins. We will also study replisome dynamics by observing synthesis of DNA on custom templates in real time. This will allow detection of replication loops and stalling that may occur. We will also examine the mechanism of lesion bypass. The insight gained is impossible with classical biochemical techniques, as individual replisomes are observed in real time rather than measuring an average of a population. Our methods will reveal heterogeneities and obtain precise quantitative details of the dynamics. Features such as pauses and back slips will enable the study of intermediate states and conformational changes linked to replisome dynamics. This proposal will satisfy academic curiosity of understanding life at the most fundamental level but will also increase our knowledge of the how the cell works and thus becomes the building blocks for disease treatment and cures of the future.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/657479
Start date: 01-08-2015
End date: 30-09-2017
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

For cells to reproduce, an accurate duplicate of the genome must be created. This is no small task. The genetic information stored in each cell consists of ~6 billion pairs of nucleobases (base pairs, bp) assembled as a polymer 2 metres long and 2 nanometres in diameter, with the structural form of a double helix. For a mammalian cell to divide, this deoxyribonucleic acid (DNA) must be copied in a time frame on the order of 1 day, or ~70,000bp a second. DNA replication is common to all 3 domains of life, bacteria, archaea and eukarya and is accomplished by a complex of proteins. This proposal brings together a researcher of great proficiency in single molecule methods and multidisciplinary research with the Single Molecule Imaging group at the London Research Institute, one of the world leading centres in DNA replication. Combined, we will build unique instruments and develop single molecule assays to understand the molecular gymnastics of DNA replication in eukaryotes. We will elucidate rates of DNA unwinding by eukaryotic helicases and establish enhancements by association with other proteins. We will also study replisome dynamics by observing synthesis of DNA on custom templates in real time. This will allow detection of replication loops and stalling that may occur. We will also examine the mechanism of lesion bypass. The insight gained is impossible with classical biochemical techniques, as individual replisomes are observed in real time rather than measuring an average of a population. Our methods will reveal heterogeneities and obtain precise quantitative details of the dynamics. Features such as pauses and back slips will enable the study of intermediate states and conformational changes linked to replisome dynamics. This proposal will satisfy academic curiosity of understanding life at the most fundamental level but will also increase our knowledge of the how the cell works and thus becomes the building blocks for disease treatment and cures of the future.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)