CM_GF | Biological relevance of the multiple infection unit as a novel target for antiviral development

Summary
The last decade of research in enteric virus infection produced a body of compelling evidences that challenged the paradigm of the single infection unit, where a single virus is able to elicit infection of a target cell. Instead, observational studies of infection in vivo and in vitro suggest that enteric viruses travel in groups: in vesicles with inverted phosphatidylserine topology or at the surface of commensal bacteria. It has been proposed that both strategies increase locally the viral multiplicity of infection, thus favoring viral complementation of defective genomes. There is a lack of knowledge on the biological relevance of the so-called multiple infection unit (MIU) as it has not been mechanistically studied in physiologically relevant model of the GI tract. In addition, the MIU is a strategy employed by all the enteric viruses so far tested, therefore it might represent a valuable target for the design of broad spectrum therapeutics. The central hypothesis of this project is that targeting MIU will inhibit enteric virus infection ex vivo and in vivo. My model of enteric virus is human norovirus (HNoV) for its clinical relevance and for its well described interaction with commensal bacteria. In work package (WP)1, to gain insight on the biological relevance of MIU in ex vivo physiologically relevant models, I will test the hypothesis that MIU increases HNoV infection in human intestinal enteroids. In aim 2, I will develop an in vitro screening platform by pulldown assay with His-tagged HNoV virus-like particles to i) screen for small molecules inhibitors of the infection and ii) identify bacterial species that are bound to HNoV in stool derived from healthy volunteer and diseased patients (i.e. inflammatory bowel disease, Crohn) . In aim 3, in order to provide evidence that targeting MIU blocks viral infection, I will test the efficacy of the small molecules identified in aim 2 in the ex-vivo model established in aim 1 and/or in-vivo, in a murine model.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841247
Start date: 01-02-2020
End date: 31-10-2022
Total budget - Public funding: 226 010,88 Euro - 226 010,00 Euro
Cordis data

Original description

The last decade of research in enteric virus infection produced a body of compelling evidences that challenged the paradigm of the single infection unit, where a single virus is able to elicit infection of a target cell. Instead, observational studies of infection in vivo and in vitro suggest that enteric viruses travel in groups: in vesicles with inverted phosphatidylserine topology or at the surface of commensal bacteria. It has been proposed that both strategies increase locally the viral multiplicity of infection, thus favoring viral complementation of defective genomes. There is a lack of knowledge on the biological relevance of the so-called multiple infection unit (MIU) as it has not been mechanistically studied in physiologically relevant model of the GI tract. In addition, the MIU is a strategy employed by all the enteric viruses so far tested, therefore it might represent a valuable target for the design of broad spectrum therapeutics. The central hypothesis of this project is that targeting MIU will inhibit enteric virus infection ex vivo and in vivo. My model of enteric virus is human norovirus (HNoV) for its clinical relevance and for its well described interaction with commensal bacteria. In work package (WP)1, to gain insight on the biological relevance of MIU in ex vivo physiologically relevant models, I will test the hypothesis that MIU increases HNoV infection in human intestinal enteroids. In aim 2, I will develop an in vitro screening platform by pulldown assay with His-tagged HNoV virus-like particles to i) screen for small molecules inhibitors of the infection and ii) identify bacterial species that are bound to HNoV in stool derived from healthy volunteer and diseased patients (i.e. inflammatory bowel disease, Crohn) . In aim 3, in order to provide evidence that targeting MIU blocks viral infection, I will test the efficacy of the small molecules identified in aim 2 in the ex-vivo model established in aim 1 and/or in-vivo, in a murine model.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018