INGENE | Integrating Nutrient economy in phytoplankton GENomics and Evolution

Summary
Phytoplankton support half of global primary production, fuel aquatic food webs, and drive global biogeochemical cycles. Phytoplankton transform inorganic nutrients into organic macromolecules. There is often a mismatch between the environmental availability of nitrogen (N) and phosphorus (P) and organismal requirements, which makes N and P important environmental stressors. These selective pressures affect genetic architecture and genome evolution in two ways, first as nucleic acids code for the genes responsible for nutrient uptake and second as they determine the N and P somatic requirements by defining the amino acids and nucleotides used to build proteins and RNA. The objective of INGENE is to estimate the impact of nutrients on the genomic structure and evolution of phytoplankton by following an interdisciplinary approach that combines laboratory experiments, genomics, bioinformatic analyses, and mathematical tools using ecologically important eukaryotic picoalgae as model phytoplankton organisms. Specifically, I will address the following sub-objectives: i) characterize the physiological traits and acclimation responses that define the uptake and use of P, ii) evaluate the impact of N and P availability on genetic architecture and genome evolution, iii) determine the effect of P availability on the whole genome mutation rate and spectrum, and iv) assess the links between genetic architecture and phenotypic physiological traits. Since eukaryotic picoalgae are the smallest known eukaryotic organisms, INGENE is poised to provide novel insights into our understanding of the minimal eukaryotic cellular structure. Moreover, by disentangling the effects of nutrient availability on phytoplankton at the molecular level, INGENE will improve our mechanistic understanding of the effect of nutrients on phytoplankton communities. This is particularly important to parametrize global models of the current global change scenario that is altering nutrient levels in the oceans.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030734
Start date: 01-06-2021
End date: 31-05-2023
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

Phytoplankton support half of global primary production, fuel aquatic food webs, and drive global biogeochemical cycles. Phytoplankton transform inorganic nutrients into organic macromolecules. There is often a mismatch between the environmental availability of nitrogen (N) and phosphorus (P) and organismal requirements, which makes N and P important environmental stressors. These selective pressures affect genetic architecture and genome evolution in two ways, first as nucleic acids code for the genes responsible for nutrient uptake and second as they determine the N and P somatic requirements by defining the amino acids and nucleotides used to build proteins and RNA. The objective of INGENE is to estimate the impact of nutrients on the genomic structure and evolution of phytoplankton by following an interdisciplinary approach that combines laboratory experiments, genomics, bioinformatic analyses, and mathematical tools using ecologically important eukaryotic picoalgae as model phytoplankton organisms. Specifically, I will address the following sub-objectives: i) characterize the physiological traits and acclimation responses that define the uptake and use of P, ii) evaluate the impact of N and P availability on genetic architecture and genome evolution, iii) determine the effect of P availability on the whole genome mutation rate and spectrum, and iv) assess the links between genetic architecture and phenotypic physiological traits. Since eukaryotic picoalgae are the smallest known eukaryotic organisms, INGENE is poised to provide novel insights into our understanding of the minimal eukaryotic cellular structure. Moreover, by disentangling the effects of nutrient availability on phytoplankton at the molecular level, INGENE will improve our mechanistic understanding of the effect of nutrients on phytoplankton communities. This is particularly important to parametrize global models of the current global change scenario that is altering nutrient levels in the oceans.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships