Summary
The oxygenation of inert C-H bonds is a highly challenging reaction that has an enormous untapped potential for the European chemical industry. Indeed, it offers attractive means to upgrade cheap hydrocarbons into high value-added products. Nature relies on iron-based enzymes and oxygen to perform such transformations. In a biomimetic spirit, catalytic alkane hydroxylation is best achieved using iron-based catalysts and H2O2 as oxidant. Compared to natural enzymes, however, such systems display modest performance. In the TAML-ArM project, we aim to the development of a novel approach that consists of creating an artificial alkane monooxygenase by introducing a highly active iron complex within a protein scaffold. This strategy, pioneered in the Ward group, has ample precedent for less challenging reactions, and it potentially represents a significant step forward in bioinspired hydroxylation chemistry. To achieve this goal artificial metalloenzymes merge homogeneous- and enzymatic catalysis, two traditionally complementary strategies. We envision that this approach will: i) improve the catalytic activity by protecting the highly reactive Fe=O-moiety by shielding it from undesirable side-reactions and ii) provide novel selectivities, owing to second coordination sphere interactions between the protein and the substrate. Thanks to this innovative catalytic approach, we will develop a paradigm shifting technology for the selective hydroxylation of hydrocarbons: the reactions will be performed in water at room temperature using benign H2O2 as oxidant.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/747125 |
Start date: | 01-04-2017 |
End date: | 31-03-2019 |
Total budget - Public funding: | 175 419,60 Euro - 175 419,00 Euro |
Cordis data
Original description
The oxygenation of inert C-H bonds is a highly challenging reaction that has an enormous untapped potential for the European chemical industry. Indeed, it offers attractive means to upgrade cheap hydrocarbons into high value-added products. Nature relies on iron-based enzymes and oxygen to perform such transformations. In a biomimetic spirit, catalytic alkane hydroxylation is best achieved using iron-based catalysts and H2O2 as oxidant. Compared to natural enzymes, however, such systems display modest performance. In the TAML-ArM project, we aim to the development of a novel approach that consists of creating an artificial alkane monooxygenase by introducing a highly active iron complex within a protein scaffold. This strategy, pioneered in the Ward group, has ample precedent for less challenging reactions, and it potentially represents a significant step forward in bioinspired hydroxylation chemistry. To achieve this goal artificial metalloenzymes merge homogeneous- and enzymatic catalysis, two traditionally complementary strategies. We envision that this approach will: i) improve the catalytic activity by protecting the highly reactive Fe=O-moiety by shielding it from undesirable side-reactions and ii) provide novel selectivities, owing to second coordination sphere interactions between the protein and the substrate. Thanks to this innovative catalytic approach, we will develop a paradigm shifting technology for the selective hydroxylation of hydrocarbons: the reactions will be performed in water at room temperature using benign H2O2 as oxidant.Status
CLOSEDCall topic
MSCA-IF-2016Update Date
28-04-2024
Images
No images available.
Geographical location(s)