Summary
Low pH foods can attenuate the glycemic response to starch-rich foods. It has been demonstrated that lemon juice, due to its low pH (pH≈2.3), inhibited key digestive enzymes thereby interrupting gastric digestion of starch in vitro. This effect can significantly reduce the glycemic response in humans. In particular, adding lemon juice to a starch rich meal reduced the mean blood glucose concentration peak by 30%. Considering the panoply of food options available, it is likely that other combinations have similar effects but no work has been conducted to develop a consolidated knowledge base to exploit this strategy.
GlucoMatchMaker will go beyond the state-of-the art by addressing this knowledge gap. The main goal is to develop and test the real-life effectiveness of the first mobile app to guide individuals on how to mix and match starchy foods with other foods/beverages to attenuate glycemic responses.
The research work will employ multidisciplinary knowledge and methodologies and is divided into 4 parts (1) Selection and characterization of starch-rich foods, low-pH foods/beverages and of how their combination influences starch digestion in vitro (WP1). (2) Determination of the conditions of effectiveness of these combinations (in silico models) (WP2). (3) Development of the first mobile app that will integrate this knowledge to guide the user on how to mix and match starch-rich foods with others to lower their glycemic impact (WP3). (4) Test the effectiveness of the developed strategy in a real-life context (WP4).
This project addresses the United Nations and EU target to reduce premature mortality from non-communicable diseases by one third as part of the 2030 Agenda for Sustainable Development. The research plan was developed in the framework of “H2020 Work Programme - Health, demographic change and wellbeing”, specifically the aim to “translate new knowledge into innovative applications and accelerate large-scale uptake and deployment”.
GlucoMatchMaker will go beyond the state-of-the art by addressing this knowledge gap. The main goal is to develop and test the real-life effectiveness of the first mobile app to guide individuals on how to mix and match starchy foods with other foods/beverages to attenuate glycemic responses.
The research work will employ multidisciplinary knowledge and methodologies and is divided into 4 parts (1) Selection and characterization of starch-rich foods, low-pH foods/beverages and of how their combination influences starch digestion in vitro (WP1). (2) Determination of the conditions of effectiveness of these combinations (in silico models) (WP2). (3) Development of the first mobile app that will integrate this knowledge to guide the user on how to mix and match starch-rich foods with others to lower their glycemic impact (WP3). (4) Test the effectiveness of the developed strategy in a real-life context (WP4).
This project addresses the United Nations and EU target to reduce premature mortality from non-communicable diseases by one third as part of the 2030 Agenda for Sustainable Development. The research plan was developed in the framework of “H2020 Work Programme - Health, demographic change and wellbeing”, specifically the aim to “translate new knowledge into innovative applications and accelerate large-scale uptake and deployment”.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/898013 |
Start date: | 01-04-2021 |
End date: | 26-04-2023 |
Total budget - Public funding: | 184 590,72 Euro - 184 590,00 Euro |
Cordis data
Original description
Low pH foods can attenuate the glycemic response to starch-rich foods. It has been demonstrated that lemon juice, due to its low pH (pH≈2.3), inhibited key digestive enzymes thereby interrupting gastric digestion of starch in vitro. This effect can significantly reduce the glycemic response in humans. In particular, adding lemon juice to a starch rich meal reduced the mean blood glucose concentration peak by 30%. Considering the panoply of food options available, it is likely that other combinations have similar effects but no work has been conducted to develop a consolidated knowledge base to exploit this strategy.GlucoMatchMaker will go beyond the state-of-the art by addressing this knowledge gap. The main goal is to develop and test the real-life effectiveness of the first mobile app to guide individuals on how to mix and match starchy foods with other foods/beverages to attenuate glycemic responses.
The research work will employ multidisciplinary knowledge and methodologies and is divided into 4 parts (1) Selection and characterization of starch-rich foods, low-pH foods/beverages and of how their combination influences starch digestion in vitro (WP1). (2) Determination of the conditions of effectiveness of these combinations (in silico models) (WP2). (3) Development of the first mobile app that will integrate this knowledge to guide the user on how to mix and match starch-rich foods with others to lower their glycemic impact (WP3). (4) Test the effectiveness of the developed strategy in a real-life context (WP4).
This project addresses the United Nations and EU target to reduce premature mortality from non-communicable diseases by one third as part of the 2030 Agenda for Sustainable Development. The research plan was developed in the framework of “H2020 Work Programme - Health, demographic change and wellbeing”, specifically the aim to “translate new knowledge into innovative applications and accelerate large-scale uptake and deployment”.
Status
TERMINATEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)