NESTOR | Nanomaterials for Enzymatic Control of Oxidative Stress Toxicity and Free Radical Generation

Summary
Recent advances in nanotechnology have already provided excellent platforms to reshape many areas of biocatalysis and healthcare, and yet many challenges are still being faced to produce artificial nanozymes with better catalytic efficiency. Pending achievements include having enhanced enzymatic robustness and stability while keeping the key aspects of natural enzymes such as high specificity, low toxicity and bioavailability. Consequently, there is currently a real demand for better-designed nanozymes capable to solve these challenges for the different industrial and health requirements. NESTOR project aims to develop atomically-designed nanozymes based on versatile iron-oxide-based materials, to assess their true toxicological impact and to theoretically model the microscopic mechanisms of their enzymatic-like reactions (e.g., catalase-like, peroxidase-like, etc.) and to achieve a product-oriented enzymatic activity with minimum toxicological impact, a highly relevant societal concern. The outcomes from NESTOR project are expected to provide a better control of enzymatic reactions inside living entities together with the additional properties from the new materials such as magnetic actuability, imaging or heating. These research goals are embedded in the motivation of establishing a dynamic network with NESTOR, aimed to train the next generation of materials scientists, theoretical physicists, chemists, toxicologists and medical doctors in a highly interdisciplinary research environment so they can benchmark upcoming challenges concerning the new biomedical and environmental challenges to come. This next generation of open-minded scientists with true knowledge of multidisciplinary work will be an essential actor in the complex interactions between nanotechnologies and society that lay ahead.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101007629
Start date: 01-10-2021
End date: 31-03-2026
Total budget - Public funding: 837 200,00 Euro - 837 200,00 Euro
Cordis data

Original description

Recent advances in nanotechnology have already provided excellent platforms to reshape many areas of biocatalysis and healthcare, and yet many challenges are still being faced to produce artificial nanozymes with better catalytic efficiency. Pending achievements include having enhanced enzymatic robustness and stability while keeping the key aspects of natural enzymes such as high specificity, low toxicity and bioavailability. Consequently, there is currently a real demand for better-designed nanozymes capable to solve these challenges for the different industrial and health requirements. NESTOR project aims to develop atomically-designed nanozymes based on versatile iron-oxide-based materials, to assess their true toxicological impact and to theoretically model the microscopic mechanisms of their enzymatic-like reactions (e.g., catalase-like, peroxidase-like, etc.) and to achieve a product-oriented enzymatic activity with minimum toxicological impact, a highly relevant societal concern. The outcomes from NESTOR project are expected to provide a better control of enzymatic reactions inside living entities together with the additional properties from the new materials such as magnetic actuability, imaging or heating. These research goals are embedded in the motivation of establishing a dynamic network with NESTOR, aimed to train the next generation of materials scientists, theoretical physicists, chemists, toxicologists and medical doctors in a highly interdisciplinary research environment so they can benchmark upcoming challenges concerning the new biomedical and environmental challenges to come. This next generation of open-minded scientists with true knowledge of multidisciplinary work will be an essential actor in the complex interactions between nanotechnologies and society that lay ahead.

Status

SIGNED

Call topic

MSCA-RISE-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2020
MSCA-RISE-2020