TEDCIP | Targeting epigenetic demethylases: development of covalent inhibitors and PROTACs (Proteolysis Targeting Chimeras).

Summary
Epigenetics is the study of heritable changes in phenotype that does not involve changes in the underlying DNA sequence. Epigenetic modifications are partly inherited, but unlike the genome itself, are cell specific, plastic, and its mechanisms are affected by different factors and processes such as aging, environmental factors or the use of drugs. The epigenetic changes are the result of epigenetic tags (chemical tags) that can determine gene expression. There are two main types of epigenetic modifications: DNA methylation and histone modifications. Many diseases such as cancer, inflammation, neurological and cardiovascular diseases can be related to aberrant histone modification patterns. Since Histone modifications are mainly carried out by three types of proteins (writers, readers and erasers) there is great therapeutic interest in these proteins, since they may influence disease onset and progression. However, the identification of potent and selective inhibitors is challenging due to structural similarities between individual domains of the ‘epigenetic’ proteins.
Histone demethylases and methyl transferases, dynamically regulate the histone methylation levels. Removal of methyl groups from methylated lysines on histone tails is catalyzed by lysine demethylases (KDMs) in a sequence- and methylation-state dependent manner. Among the different KDMs, the JmjC-domain containing KDMs are Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases. Despite some KDM inhibitors have been reported, achieving selectivity remains a major challenge. In order to achieve the required selectivity, two different approaches are considered in the current proposal: 1) development of covalent inhibitors with specific residues of certain KDMs and 2) development of Proteolysis Targeting Chimeras (PROTACs) to control intracellular protein levels by recruiting the KDMs to E3 ligases to induce their ubiquitination and subsequent proteasome mediated degradation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/744389
Start date: 01-08-2017
End date: 31-01-2020
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

Epigenetics is the study of heritable changes in phenotype that does not involve changes in the underlying DNA sequence. Epigenetic modifications are partly inherited, but unlike the genome itself, are cell specific, plastic, and its mechanisms are affected by different factors and processes such as aging, environmental factors or the use of drugs. The epigenetic changes are the result of epigenetic tags (chemical tags) that can determine gene expression. There are two main types of epigenetic modifications: DNA methylation and histone modifications. Many diseases such as cancer, inflammation, neurological and cardiovascular diseases can be related to aberrant histone modification patterns. Since Histone modifications are mainly carried out by three types of proteins (writers, readers and erasers) there is great therapeutic interest in these proteins, since they may influence disease onset and progression. However, the identification of potent and selective inhibitors is challenging due to structural similarities between individual domains of the ‘epigenetic’ proteins.
Histone demethylases and methyl transferases, dynamically regulate the histone methylation levels. Removal of methyl groups from methylated lysines on histone tails is catalyzed by lysine demethylases (KDMs) in a sequence- and methylation-state dependent manner. Among the different KDMs, the JmjC-domain containing KDMs are Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases. Despite some KDM inhibitors have been reported, achieving selectivity remains a major challenge. In order to achieve the required selectivity, two different approaches are considered in the current proposal: 1) development of covalent inhibitors with specific residues of certain KDMs and 2) development of Proteolysis Targeting Chimeras (PROTACs) to control intracellular protein levels by recruiting the KDMs to E3 ligases to induce their ubiquitination and subsequent proteasome mediated degradation.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016