MUSYCA | MUltimetallic SYstems for C-H Activation processes

Summary
MUSYCA - Multimetallic Systems for C-H Activation processes - is a project designed to obtain a better understanding of the key factors governing C-H activation phenomena in multinuclear copper-based cores present in the most efficient frameworks such as enzymes or zeolites like methane monooxygenases (MMOs) or Cu-ZSM-5, respectively. One of the main goals of the project is to obtain complexes containing Cu2O entities, which have not yet been interrogated and are reactive enough to oxidize C-H bonds. These will be employed in the stoichiometric and catalytic transformation of hydrocarbon bonds of numerous substrates, from easily convertible to extremely challenging ones, being methane the stretch goal. The reactivity patterns and the corresponding mechanisms underlying the formation of Cu-O fragments as well as those involving the formation of C-O bonds will be studied by using a wide variety of analytical techniques. To this end, robust 2,7-substituted [1,8]naphthyridine scaffolds will be employed as dinucleating ligands, since they resemble the environment surrounding dinuclear active sites in natural enzymes and they facilitate a close interaction between the metals, at the same time that the chelating groups in positions 2 and 7 help to stabilize the resulting complexes. These ligands will also be employed in the other major target of the project, which consists of the development of dinuclear Pt-Cu compounds so as to evaluate the metal cooperativity in a modified Shilov system for C-H activation. Only a few studies have been carried out on the role of copper in the Shilov-type C-H functionalization reaction, showing its great potential for improving the catalytic performance of the active species involved in the process. However, the role of Pt as active catalyst and Cu as oxidant in the same complex has never been investigated, and the aforementioned frameworks developed in the labs of Prof. Tilley are ideal for this purpose.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841154
Start date: 01-08-2019
End date: 31-07-2022
Total budget - Public funding: 245 732,16 Euro - 245 732,00 Euro
Cordis data

Original description

MUSYCA - Multimetallic Systems for C-H Activation processes - is a project designed to obtain a better understanding of the key factors governing C-H activation phenomena in multinuclear copper-based cores present in the most efficient frameworks such as enzymes or zeolites like methane monooxygenases (MMOs) or Cu-ZSM-5, respectively. One of the main goals of the project is to obtain complexes containing Cu2O entities, which have not yet been interrogated and are reactive enough to oxidize C-H bonds. These will be employed in the stoichiometric and catalytic transformation of hydrocarbon bonds of numerous substrates, from easily convertible to extremely challenging ones, being methane the stretch goal. The reactivity patterns and the corresponding mechanisms underlying the formation of Cu-O fragments as well as those involving the formation of C-O bonds will be studied by using a wide variety of analytical techniques. To this end, robust 2,7-substituted [1,8]naphthyridine scaffolds will be employed as dinucleating ligands, since they resemble the environment surrounding dinuclear active sites in natural enzymes and they facilitate a close interaction between the metals, at the same time that the chelating groups in positions 2 and 7 help to stabilize the resulting complexes. These ligands will also be employed in the other major target of the project, which consists of the development of dinuclear Pt-Cu compounds so as to evaluate the metal cooperativity in a modified Shilov system for C-H activation. Only a few studies have been carried out on the role of copper in the Shilov-type C-H functionalization reaction, showing its great potential for improving the catalytic performance of the active species involved in the process. However, the role of Pt as active catalyst and Cu as oxidant in the same complex has never been investigated, and the aforementioned frameworks developed in the labs of Prof. Tilley are ideal for this purpose.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018