Summary
This proposal aims at developing novel hybrid DNA-protein nanopores with well-defined, uniform channel sizes, to advance fundamental studies on transport across membranes and to enable the development of new biosensors and progress towards creating artificial cells and tissues. Currently used protein nanopores either have a limited cargo capacity, which is set by their internal diameter, or they are heterogeneous in size and sometimes incompletely assembled. I propose to use DNA origami nanostructures as scaffolds for barrel- and ring-forming peptides of alpha-haemolysin and ClyA/Wza to create hybrid pores with larger and uniform pore sizes. These hybrid pores have the advantage that they are fully biocompatible and retain the potential for genetic and chemical engineering at the level of the DNA and proteins through the use of nucleotide recognition sequences and functionalised amino acid residues. By systematic characterisation of the hybrid nanopores in the controlled environment of droplet interface bilayers using single-channel current recordings and fluorescent detection of transport across membranes, the proposed hybrid nanopores will provide valuable insights into membrane transport and potential applications in biotechnology and medicine.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/655660 |
Start date: | 01-07-2015 |
End date: | 30-06-2017 |
Total budget - Public funding: | 195 454,80 Euro - 195 454,00 Euro |
Cordis data
Original description
This proposal aims at developing novel hybrid DNA-protein nanopores with well-defined, uniform channel sizes, to advance fundamental studies on transport across membranes and to enable the development of new biosensors and progress towards creating artificial cells and tissues. Currently used protein nanopores either have a limited cargo capacity, which is set by their internal diameter, or they are heterogeneous in size and sometimes incompletely assembled. I propose to use DNA origami nanostructures as scaffolds for barrel- and ring-forming peptides of alpha-haemolysin and ClyA/Wza to create hybrid pores with larger and uniform pore sizes. These hybrid pores have the advantage that they are fully biocompatible and retain the potential for genetic and chemical engineering at the level of the DNA and proteins through the use of nucleotide recognition sequences and functionalised amino acid residues. By systematic characterisation of the hybrid nanopores in the controlled environment of droplet interface bilayers using single-channel current recordings and fluorescent detection of transport across membranes, the proposed hybrid nanopores will provide valuable insights into membrane transport and potential applications in biotechnology and medicine.Status
CLOSEDCall topic
MSCA-IF-2014-EFUpdate Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all