SOCISS | Spin-Orbit Coupling at Interfaces from Spintronics to new Superconducting effects

Summary
In the proposed project “Spin-Orbit Coupling at Interfaces from Spintronics to new Superconducting effects” (SOCISS) the experienced researcher Dr. Juan Borge and the scientist in charge Prof. Angel Rubio, Head of the Nano-Bio Spectroscopy (NBS) group at the university of the Basque Country (UPV/EHU), aim at stablish a complete description of interfacial spin-orbit coupling. This understanding will allow us to describe many transport, both electrical and spin, phenomena, and to include the effect of this interaction in normal and superconducting alloys. This study will be done following two different approaches; a theoretical description using effective kinetic equations, and through simulations performed with a computational platform combining recent theoretical developments in density functional theory and many body physics.SOCISS responds to two different purposes, the implementation of its results into the realization of new devices, and contribute to a deeper understanding on the fundamental relations in quantum mechanics. On one hand interfacial spin-orbit coupling looks one of the best alternatives to heavy atoms in the research of new materials with high values of the spin Hall and Edelstein conductivities. On the other hand SOCISS provides the perfect opportunity to gain some insight into the relation between the spin and the charge of the electron in equilibrium and non-equilibrium situations. The skills the researcher will acquire in computational methods and superconductivity will be essential in order to advance its career as an independent investigator.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/703195
Start date: 01-06-2016
End date: 31-05-2018
Total budget - Public funding: 158 121,60 Euro - 158 121,00 Euro
Cordis data

Original description

In the proposed project “Spin-Orbit Coupling at Interfaces from Spintronics to new Superconducting effects” (SOCISS) the experienced researcher Dr. Juan Borge and the scientist in charge Prof. Angel Rubio, Head of the Nano-Bio Spectroscopy (NBS) group at the university of the Basque Country (UPV/EHU), aim at stablish a complete description of interfacial spin-orbit coupling. This understanding will allow us to describe many transport, both electrical and spin, phenomena, and to include the effect of this interaction in normal and superconducting alloys. This study will be done following two different approaches; a theoretical description using effective kinetic equations, and through simulations performed with a computational platform combining recent theoretical developments in density functional theory and many body physics.SOCISS responds to two different purposes, the implementation of its results into the realization of new devices, and contribute to a deeper understanding on the fundamental relations in quantum mechanics. On one hand interfacial spin-orbit coupling looks one of the best alternatives to heavy atoms in the research of new materials with high values of the spin Hall and Edelstein conductivities. On the other hand SOCISS provides the perfect opportunity to gain some insight into the relation between the spin and the charge of the electron in equilibrium and non-equilibrium situations. The skills the researcher will acquire in computational methods and superconductivity will be essential in order to advance its career as an independent investigator.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)