Summary
This proposal outlines our vision for generating the first mechanical quantum bit (qubit) ever produced. The qubit will be realized with a carbon nanotube (CNT) in two steps. First, a carbon nanotube mechanical resonator is prepared in its quantum ground state and strongly coupled to an embedded electronic two-level system (eTLS). The eTLS is realized by carefully tuning the energy states of two spatially distinct charge quantum dots until they hybridize. This double quantum dot is hosted along the suspended carbon nanotube and localized such that it couples strongly to a high mechanical quality factor vibrational mode.
Secondly, the strong coupling between the emergent eTLS and the CNT mechanical mode enables a tunable and strong anharmonicity in the mechanical restoring potential. This anharmonicity makes it possible to use the system as a qubit, which will be realized by integrating the nano-electromechanical (NEMS) device with a superconducting microwave cavity. This allows for the mechanical qubit to be coherently addressed and sensitively read-out using the state-dependent frequency shift imparted by the qubit on the superconducting cavity.
Secondly, the strong coupling between the emergent eTLS and the CNT mechanical mode enables a tunable and strong anharmonicity in the mechanical restoring potential. This anharmonicity makes it possible to use the system as a qubit, which will be realized by integrating the nano-electromechanical (NEMS) device with a superconducting microwave cavity. This allows for the mechanical qubit to be coherently addressed and sensitively read-out using the state-dependent frequency shift imparted by the qubit on the superconducting cavity.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101023289 |
Start date: | 01-04-2021 |
End date: | 31-03-2023 |
Total budget - Public funding: | 160 932,48 Euro - 160 932,00 Euro |
Cordis data
Original description
This proposal outlines our vision for generating the first mechanical quantum bit (qubit) ever produced. The qubit will be realized with a carbon nanotube (CNT) in two steps. First, a carbon nanotube mechanical resonator is prepared in its quantum ground state and strongly coupled to an embedded electronic two-level system (eTLS). The eTLS is realized by carefully tuning the energy states of two spatially distinct charge quantum dots until they hybridize. This double quantum dot is hosted along the suspended carbon nanotube and localized such that it couples strongly to a high mechanical quality factor vibrational mode.Secondly, the strong coupling between the emergent eTLS and the CNT mechanical mode enables a tunable and strong anharmonicity in the mechanical restoring potential. This anharmonicity makes it possible to use the system as a qubit, which will be realized by integrating the nano-electromechanical (NEMS) device with a superconducting microwave cavity. This allows for the mechanical qubit to be coherently addressed and sensitively read-out using the state-dependent frequency shift imparted by the qubit on the superconducting cavity.
Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping