MAGTMD | Novel forms of magnetism in 2D transition metal dichalcogenides

Summary
The ultimate goal of this project is to demonstrate that the enhanced electronic correlations in transition metal dichalcogenides (TMDs) lead to different expressions of magnetism in the two-dimensional (2D) limit. Beyond the prototypical case of a 2D magnet vanadium diselenide, many different TMDs materials, in their 2D limit, have the potential to host magnetic order, which often will coexist with other collective electronic states such as superconductivity. Here, the starting hypothesis stems from strong electron-electron interaction that are intrinsically present in TMD materials and further, in two dimensions, reduced screening results in markedly enhanced electron–electron interactions which usually favor the emergence of magnetic order. This project will focus on select TMD materials of particular interest for different reasons, such as magnetism in coexistence with superconductivity, emergence of a half-metal state, and magnetism generated by atomic vacancies. By using ultra-low temperature scanning tunneling microscopy and spectroscopy, this project will offer significant insights in the field of 2D magnetism by investigating the emergence of magnetic order in these strongly correlated TMD materials and its interplay with other electronic phases.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101033538
Start date: 01-04-2021
End date: 31-03-2023
Total budget - Public funding: 160 932,48 Euro - 160 932,00 Euro
Cordis data

Original description

The ultimate goal of this project is to demonstrate that the enhanced electronic correlations in transition metal dichalcogenides (TMDs) lead to different expressions of magnetism in the two-dimensional (2D) limit. Beyond the prototypical case of a 2D magnet vanadium diselenide, many different TMDs materials, in their 2D limit, have the potential to host magnetic order, which often will coexist with other collective electronic states such as superconductivity. Here, the starting hypothesis stems from strong electron-electron interaction that are intrinsically present in TMD materials and further, in two dimensions, reduced screening results in markedly enhanced electron–electron interactions which usually favor the emergence of magnetic order. This project will focus on select TMD materials of particular interest for different reasons, such as magnetism in coexistence with superconductivity, emergence of a half-metal state, and magnetism generated by atomic vacancies. By using ultra-low temperature scanning tunneling microscopy and spectroscopy, this project will offer significant insights in the field of 2D magnetism by investigating the emergence of magnetic order in these strongly correlated TMD materials and its interplay with other electronic phases.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships