SuperCONtacts | Solid state diffusion for atomically sharp interfaces in semiconductor-superconductor hybrid structures

Summary
The emerging field of superconducting optoelectronics has the potential to impact future quantum processing, communication and encryption. Hybrid light-emitting diodes exhibit emission of entangled photons enhanced by the superconducting state, while novel superconductor (Su) based lasers and quantum light sources have been proposed. Despite the amount of research done in semiconductor (Se) p-n physics and superconductivity, the practical integration between these two field of research is poor mainly due to the weak control of high quality Se/Su interfaces.
This project proposes to overcome these limitations with a new fabrication technique, based on the metallic diffusion of metals in Se nanowires (NWs), for the realization of atomically sharp Su/Se interfaces with an epitaxial relationship.
Starting from a material search I will then investigate the Al (Tc~1K) diffusion into n-doped InAs NWs as well as V and Nb (all Tc>5 K) diffusion into InAs, Si, Ge and GAs NWs. The band structures and resulting contact types (Schottky or Ohmic) of the different material systems will be studied numerically and tested at cryogenic temperatures to find the best material combination. Doping of the nanowires will be tuned to demonstrate superconducting correlations in both p- and n-doped NWs, an essential step for the realization of superconducting diodes. Diffusion through in-situ (S)TEM heating experiments will allow me to control the Su/Se/Su junctions up to the ultimate limit of few nanometers. These ultra-short JJs will allow to enhance the superconducting correlations. Ballistic transport will be probed down to ultra-low temperatures (~10 mK). and the quantification of the mean free path and the quality of the interfaces will take place. By embedding these ultra-short JJs in a superconducting quantum interference device I will be able to control the intensity supercurrent as well as achieving ultimate magnetic-sensitivity ready for novel technological applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101022473
Start date: 15-07-2021
End date: 14-07-2023
Total budget - Public funding: 171 473,28 Euro - 171 473,00 Euro
Cordis data

Original description

The emerging field of superconducting optoelectronics has the potential to impact future quantum processing, communication and encryption. Hybrid light-emitting diodes exhibit emission of entangled photons enhanced by the superconducting state, while novel superconductor (Su) based lasers and quantum light sources have been proposed. Despite the amount of research done in semiconductor (Se) p-n physics and superconductivity, the practical integration between these two field of research is poor mainly due to the weak control of high quality Se/Su interfaces.
This project proposes to overcome these limitations with a new fabrication technique, based on the metallic diffusion of metals in Se nanowires (NWs), for the realization of atomically sharp Su/Se interfaces with an epitaxial relationship.
Starting from a material search I will then investigate the Al (Tc~1K) diffusion into n-doped InAs NWs as well as V and Nb (all Tc>5 K) diffusion into InAs, Si, Ge and GAs NWs. The band structures and resulting contact types (Schottky or Ohmic) of the different material systems will be studied numerically and tested at cryogenic temperatures to find the best material combination. Doping of the nanowires will be tuned to demonstrate superconducting correlations in both p- and n-doped NWs, an essential step for the realization of superconducting diodes. Diffusion through in-situ (S)TEM heating experiments will allow me to control the Su/Se/Su junctions up to the ultimate limit of few nanometers. These ultra-short JJs will allow to enhance the superconducting correlations. Ballistic transport will be probed down to ultra-low temperatures (~10 mK). and the quantification of the mean free path and the quality of the interfaces will take place. By embedding these ultra-short JJs in a superconducting quantum interference device I will be able to control the intensity supercurrent as well as achieving ultimate magnetic-sensitivity ready for novel technological applications.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships