UNRAVELS | UNderstanding, descRibing And Visualizing Electronic charge in noveL oxide heteroStructures

Summary
"Charge reorganization at the interface between oxides is the key feature of the emerging field of oxide-based electronics
(""oxitronics""). Oxides like perovskites, ferrites, manganites (as SrTiO3, BaTiO3, Fe3O4, BiFeO3, CaMnO3) have become
the building blocks for complex heterostructures coupling together at nanoscale different electronic and magnetic properties.
Heterostructures can be used to create new outstanding electronic devices to go beyond the traditional silicon-based
architectures. To control oxides electro-magnetic properties it's mandatory to completely understand the phenomena taking
place at the nanoscale, like charge fluctuation and disproportionation, spin symmetry breaking or local chemical
coordination experimentally measured with atomic-resolution and directly connected with the changes in the electronic and
optical excitations spectra. This project wants to integrate sophisticated ab initio parameter-free simulations, based on
Density Functional Theory and including many body effects, through Many Body Perturbation Theory and Time Dependent
Density Functional Theory, with measurements in order to understand and to predict the mechanisms in oxides at
nanoscale. These transferable and predictive parameter-free approaches will complement and guide the experiment. The
direct comparison of calculated spectra with the experiment will permit to identify the electronic origin of the different
excitations, their mutual interactions and their coupling driven by other degrees of freedom. The electronic structure of
oxides (charge occupation, bandstructure, bandoffsets) across the metal-insulator transition will be calculated through the
correct estimation of dielectric screening function; effect of dopants and strain on oxides and interfaces will be analyzed by
calculating electronic and optical spectra. Moreover the side-by-side direct comparison between the calculated spectra and
measured observables will permit to refine the theory and its ingredients."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/660684
Start date: 01-05-2015
End date: 30-04-2017
Total budget - Public funding: 173 076,00 Euro - 173 076,00 Euro
Cordis data

Original description

"Charge reorganization at the interface between oxides is the key feature of the emerging field of oxide-based electronics
(""oxitronics""). Oxides like perovskites, ferrites, manganites (as SrTiO3, BaTiO3, Fe3O4, BiFeO3, CaMnO3) have become
the building blocks for complex heterostructures coupling together at nanoscale different electronic and magnetic properties.
Heterostructures can be used to create new outstanding electronic devices to go beyond the traditional silicon-based
architectures. To control oxides electro-magnetic properties it's mandatory to completely understand the phenomena taking
place at the nanoscale, like charge fluctuation and disproportionation, spin symmetry breaking or local chemical
coordination experimentally measured with atomic-resolution and directly connected with the changes in the electronic and
optical excitations spectra. This project wants to integrate sophisticated ab initio parameter-free simulations, based on
Density Functional Theory and including many body effects, through Many Body Perturbation Theory and Time Dependent
Density Functional Theory, with measurements in order to understand and to predict the mechanisms in oxides at
nanoscale. These transferable and predictive parameter-free approaches will complement and guide the experiment. The
direct comparison of calculated spectra with the experiment will permit to identify the electronic origin of the different
excitations, their mutual interactions and their coupling driven by other degrees of freedom. The electronic structure of
oxides (charge occupation, bandstructure, bandoffsets) across the metal-insulator transition will be calculated through the
correct estimation of dielectric screening function; effect of dopants and strain on oxides and interfaces will be analyzed by
calculating electronic and optical spectra. Moreover the side-by-side direct comparison between the calculated spectra and
measured observables will permit to refine the theory and its ingredients."

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)