MNR4SCell | Micro/Nano Robotics for Single Cancer Cells

Summary
Cancer is considered as the second leading cause of death worldwide. It is important to develop methodologies that improve understanding of the disease condition and progression. Over the past few years, single cell biology has been performed using micro/nano robotics for exploration of the nanomechanical and electrophysiological properties of cells. However, most of the research so far has been empirical and the understanding of the mechanisms and thus possible for cancer therapy are limited. Therefore, a systematic approach to address this challenge using advanced micro/robotics techniques is timely and important to a wide range of the technologies where micro/nano manipulation and measurement are in demand. The proposed “Micro/nano robotics for single cancer cells (MNR4SCell)” project focuses on the staff exchange between the 8 world recognised institutions of EU and China, and the share of knowledge and ideas, and further the development of the leading edge technologies for the design, modelling, and control of micro/nano robotics and their applications in single cancer cell measurement, characterisation, manipulation, and surgery. This project meets the objectives and requirements of the Marie Skłodowska-Curie Actions: Research and Innovation Staff Exchange (RISE). The ultimate goal of MNR4SCell is to establish long-term international and multidisciplinary research collaboration between Europe and China in the challenging field of micro/nano robotics for single cancer cells in the characterisation, diagnosis and targeted therapy. The synergistic approach and knowledge established by MNR4SCell will serve as the building blocks of the micro/nano robotics and biomedical applications, and thus keep the consortium’s leading position in the world for potential major scientific and technological breakthroughs in nanotechnology and cancer therapy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/734174
Start date: 01-01-2017
End date: 31-10-2022
Total budget - Public funding: 1 755 000,00 Euro - 1 215 000,00 Euro
Cordis data

Original description

Cancer is considered as the second leading cause of death worldwide. It is important to develop methodologies that improve understanding of the disease condition and progression. Over the past few years, single cell biology has been performed using micro/nano robotics for exploration of the nanomechanical and electrophysiological properties of cells. However, most of the research so far has been empirical and the understanding of the mechanisms and thus possible for cancer therapy are limited. Therefore, a systematic approach to address this challenge using advanced micro/robotics techniques is timely and important to a wide range of the technologies where micro/nano manipulation and measurement are in demand. The proposed “Micro/nano robotics for single cancer cells (MNR4SCell)” project focuses on the staff exchange between the 8 world recognised institutions of EU and China, and the share of knowledge and ideas, and further the development of the leading edge technologies for the design, modelling, and control of micro/nano robotics and their applications in single cancer cell measurement, characterisation, manipulation, and surgery. This project meets the objectives and requirements of the Marie Skłodowska-Curie Actions: Research and Innovation Staff Exchange (RISE). The ultimate goal of MNR4SCell is to establish long-term international and multidisciplinary research collaboration between Europe and China in the challenging field of micro/nano robotics for single cancer cells in the characterisation, diagnosis and targeted therapy. The synergistic approach and knowledge established by MNR4SCell will serve as the building blocks of the micro/nano robotics and biomedical applications, and thus keep the consortium’s leading position in the world for potential major scientific and technological breakthroughs in nanotechnology and cancer therapy.

Status

CLOSED

Call topic

MSCA-RISE-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2016
MSCA-RISE-2016