REBOOST | Rewiring with biased signaling to override oxidative pathway defects for SEPN1-related myopathy therapy

Summary
SEPN1-related myopathy (SEPN1-RM) is a rare, untreatable debilitating congenital myopathy in which SEPN1 mutations impair the antioxidant system, ER stress protection and mitochondrial oxidative function. These altered cellular processes ultimately lead to a significant loss of bioenergetic production and abrogate muscle cellular functions. SEPN1-RM patients experience potentially-lethal respiratory failure and major life burden due to loss of mobility. Currently, there are no high-throughput or appropriate preclinical models to facilitate identification of disease-modifying drugs; this has hampered efforts in devising therapeutic strategies. To overcome these bottlenecks, I aim to use patient-derived cells to establish (1) high-throughput measureable readouts of metabolism, facilitating repurposed drug screen for SEPN1-RM; (2) an original treatment strategy by exploiting potential biased signalings, which bypass SEPN1 defects to restore cellular bioenergetics. I will capitalize on (1) the availability of SEPN1-RM biopsies, (2) host lab expertise for handling and culturing primary SEPN1-RM cells and (3) my experience in muscle biology and innovative tools for analysing metabolic/signalling pathways. I aim to implement transcriptomic analyses by using next-generation RNA-seq, optogenetic based sensors to quantify metabolic activity, real-time clonal analysis of cell fate with dynamic fluorescent time-lapse microscopy and multi-dimensional assessment of intracellular activities at single-cell level via CYTOF technology. This study will not only facilitate the establishment of SEPN1-RM biomarkers and novel therapeutic studies, it will also provide a model paradigm for analysing and treating other inherited or acquired myopathies sharing an underlying bioenergetic deficiency, including sarcopenia and cancer cachexia.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/897735
Start date: 01-05-2020
End date: 30-04-2022
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

SEPN1-related myopathy (SEPN1-RM) is a rare, untreatable debilitating congenital myopathy in which SEPN1 mutations impair the antioxidant system, ER stress protection and mitochondrial oxidative function. These altered cellular processes ultimately lead to a significant loss of bioenergetic production and abrogate muscle cellular functions. SEPN1-RM patients experience potentially-lethal respiratory failure and major life burden due to loss of mobility. Currently, there are no high-throughput or appropriate preclinical models to facilitate identification of disease-modifying drugs; this has hampered efforts in devising therapeutic strategies. To overcome these bottlenecks, I aim to use patient-derived cells to establish (1) high-throughput measureable readouts of metabolism, facilitating repurposed drug screen for SEPN1-RM; (2) an original treatment strategy by exploiting potential biased signalings, which bypass SEPN1 defects to restore cellular bioenergetics. I will capitalize on (1) the availability of SEPN1-RM biopsies, (2) host lab expertise for handling and culturing primary SEPN1-RM cells and (3) my experience in muscle biology and innovative tools for analysing metabolic/signalling pathways. I aim to implement transcriptomic analyses by using next-generation RNA-seq, optogenetic based sensors to quantify metabolic activity, real-time clonal analysis of cell fate with dynamic fluorescent time-lapse microscopy and multi-dimensional assessment of intracellular activities at single-cell level via CYTOF technology. This study will not only facilitate the establishment of SEPN1-RM biomarkers and novel therapeutic studies, it will also provide a model paradigm for analysing and treating other inherited or acquired myopathies sharing an underlying bioenergetic deficiency, including sarcopenia and cancer cachexia.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019