Dielec2DBiomolecules | Dielectric measurement of two-dimentionally confined biomolecules at the nanoscale

Summary
Macromolecular organization and interactions have long been recognized to be strongly influenced by electrostatic and electrodynamics interactions which in turn depend on the molecular polarizability. In particular, molecular polarization plays a fundamental role in the molecular structure of biomolecules like DNA and proteins. Yet, this physical property of biomolecules has remained almost unexplored so far because measurements on the molecular scale are a technical challenge. Previous experimental work mostly relied on standard approaches as such broadband dielectric spectroscopy which are limited to the micrometer scale and, therefore, cannot resolve the polarization properties of single molecules. Hence, new experimental approaches are needed to measure the polarizability of molecules at molecular level. In this project, we will tackle this important issue and develop a novel experimental platform that will allow to access for the first time the polarizability of biomolecules under two-dimensional (2D) confinement. This will be achieved by coupling two novel technologies of nanoscience: scanning dielectric microscopy, a recently developed scanning probe technique, and the 2D-materials technology. We will engineer novel 2D liquid cells by assembling 2D crystals, and we will measure the dielectric properties of the biomolecules confined inside using a scanning probe. This is an ambitious experimental research with a strong interdisciplinary and groundbreaking nature, based on the powerful combination of new microscopic approaches with novel 2D materials. The developed platform will access previously unknown physical properties of biomolecules that are crucial to understand their behaviour. It will provide much-needed feedback for first-principles and mean-field theories and allow a better understanding of biomolecular structure and functions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/842402
Start date: 10-09-2019
End date: 09-09-2021
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

Macromolecular organization and interactions have long been recognized to be strongly influenced by electrostatic and electrodynamics interactions which in turn depend on the molecular polarizability. In particular, molecular polarization plays a fundamental role in the molecular structure of biomolecules like DNA and proteins. Yet, this physical property of biomolecules has remained almost unexplored so far because measurements on the molecular scale are a technical challenge. Previous experimental work mostly relied on standard approaches as such broadband dielectric spectroscopy which are limited to the micrometer scale and, therefore, cannot resolve the polarization properties of single molecules. Hence, new experimental approaches are needed to measure the polarizability of molecules at molecular level. In this project, we will tackle this important issue and develop a novel experimental platform that will allow to access for the first time the polarizability of biomolecules under two-dimensional (2D) confinement. This will be achieved by coupling two novel technologies of nanoscience: scanning dielectric microscopy, a recently developed scanning probe technique, and the 2D-materials technology. We will engineer novel 2D liquid cells by assembling 2D crystals, and we will measure the dielectric properties of the biomolecules confined inside using a scanning probe. This is an ambitious experimental research with a strong interdisciplinary and groundbreaking nature, based on the powerful combination of new microscopic approaches with novel 2D materials. The developed platform will access previously unknown physical properties of biomolecules that are crucial to understand their behaviour. It will provide much-needed feedback for first-principles and mean-field theories and allow a better understanding of biomolecular structure and functions.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018