GTR | Dissecting gamma-TuRC composition and activity by Single Molecule Pull-down

Summary
In this project I will use Single Molecule Pull-down (SiMPull) for studying activity and regulation of human gamma-tubulin
ring complexes (gamma-TuRCs). Gamma-TuRCs are the main nucleators of microtubule (MT) polymerization. Additionally, gamma-TuRCs may play a role in modulating MT dynamics. Regulation of gamma-TuRC activity is key to organizing the dynamic MT arrays needed for essential processes in various cell types. Progress in understanding gamma-TuRC regulation at the molecular level is currently hampered by a lack of information about subunit stoichiometries and interactions, and by technical difficulties that have prevented reconstitution of gamma-TuRCs in vitro. I will tackle these challenges by using SiMPull to immunoprecipitate and immobilize gamma-TuRCs to a glass surface directly from cell extracts collected at different cell cycle stages, and analyze individual gamma-TuRCs using high resolution microscopy. I will express tagged gamma-TuRC subunits in cells to isolate wildtype and mutant gamma-TuRCs. Using fluorescent protein tags and antibodies I will visualize and quantify components in individual gamma-TuRCs and, by incubation in pure tubulin and GTP, determine how gamma-TuRC composition is related to its ability to nucleate MTs and modulate MT dynamics. Together, the proposed research will expand the field’s toolbox, thereby allowing new, molecular level insight into gamma-TuRC activity and its regulation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/703907
Start date: 01-09-2017
End date: 31-08-2019
Total budget - Public funding: 158 121,60 Euro - 158 121,00 Euro
Cordis data

Original description

In this project I will use Single Molecule Pull-down (SiMPull) for studying activity and regulation of human gamma-tubulin
ring complexes (gamma-TuRCs). Gamma-TuRCs are the main nucleators of microtubule (MT) polymerization. Additionally, gamma-TuRCs may play a role in modulating MT dynamics. Regulation of gamma-TuRC activity is key to organizing the dynamic MT arrays needed for essential processes in various cell types. Progress in understanding gamma-TuRC regulation at the molecular level is currently hampered by a lack of information about subunit stoichiometries and interactions, and by technical difficulties that have prevented reconstitution of gamma-TuRCs in vitro. I will tackle these challenges by using SiMPull to immunoprecipitate and immobilize gamma-TuRCs to a glass surface directly from cell extracts collected at different cell cycle stages, and analyze individual gamma-TuRCs using high resolution microscopy. I will express tagged gamma-TuRC subunits in cells to isolate wildtype and mutant gamma-TuRCs. Using fluorescent protein tags and antibodies I will visualize and quantify components in individual gamma-TuRCs and, by incubation in pure tubulin and GTP, determine how gamma-TuRC composition is related to its ability to nucleate MTs and modulate MT dynamics. Together, the proposed research will expand the field’s toolbox, thereby allowing new, molecular level insight into gamma-TuRC activity and its regulation.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)