SizerSingleCell | Molecular dynamics of size sensing at the single cell level.

Summary
Cells have strict control over their size to ensure proper cell physiology. They also have ways to correct for deviations, referred to as cell-size homeostasis, leading to a very narrow distribution in cell size at division. Although some of the genes involved in this process have been identified, the underlying molecular mechanism has remained elusive. One possibility is that the cell can “sense” its size through a protein whose concentrations are related to cell-size ‒ known as the sizer model. However, this would not completely explain the fact that diploid cells are approximately twice the size of haploids, suggesting that ploidy also plays a role ‒ something that has not garnered a lot of attention in the field. Live-cell fluorescence microscopy is well-suited to address these issues because we can directly visualize the dynamics and localization patterns of sizers, along with cell-size, and quantify these characteristics. I propose to develop a live single-cell fluorescence microscopy approach using a microfluidics device that allows mother cell lineages to be tracked across multiple generations, for use with haploid and diploid strains of the unicellular eukaryotic organism, Schizosaccharomyces pombe. This will allow me to measure protein levels of sizer candidates and their localization, along with cell length, across single lineages. This information could reveal long-term dynamics and correlations between sizer candidates and cell-size, and provide insight into the molecular mechanisms governing cell-size homeostasis and the role that ploidy plays in governing cell-size control within eukaryotes.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101031970
Start date: 01-09-2022
End date: 31-08-2024
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

Cells have strict control over their size to ensure proper cell physiology. They also have ways to correct for deviations, referred to as cell-size homeostasis, leading to a very narrow distribution in cell size at division. Although some of the genes involved in this process have been identified, the underlying molecular mechanism has remained elusive. One possibility is that the cell can “sense” its size through a protein whose concentrations are related to cell-size ‒ known as the sizer model. However, this would not completely explain the fact that diploid cells are approximately twice the size of haploids, suggesting that ploidy also plays a role ‒ something that has not garnered a lot of attention in the field. Live-cell fluorescence microscopy is well-suited to address these issues because we can directly visualize the dynamics and localization patterns of sizers, along with cell-size, and quantify these characteristics. I propose to develop a live single-cell fluorescence microscopy approach using a microfluidics device that allows mother cell lineages to be tracked across multiple generations, for use with haploid and diploid strains of the unicellular eukaryotic organism, Schizosaccharomyces pombe. This will allow me to measure protein levels of sizer candidates and their localization, along with cell length, across single lineages. This information could reveal long-term dynamics and correlations between sizer candidates and cell-size, and provide insight into the molecular mechanisms governing cell-size homeostasis and the role that ploidy plays in governing cell-size control within eukaryotes.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships