MECHANO FIBROSIS | Regulation of mechanotransduction through motor-molecules activation of focal adhesion kinase in progressive fibrosis

Summary
Mechanical forces drive fundamental physiological functions in living organisms, yet it remains unclear how forces are transduced into intracellular biochemical signals. Mechanotransduction is a tightly regulated process, and its disruption often results in pathologies including tumorigenesis, chronic inflammation and fibrotic conditions. Crucially, recent studies have shown an important relationship between abnormal fibrosis and altered patterns of focal adhesion kinase (FAK) activity and cell adhesion.

Prof. del Campo laboratory has pioneered the use of photo-triggerable ligands to spatiotemporally control cell adhesion and recently, Prof. García has demonstrated in vivo that spatiotemporal control of cell adhesion modulates fibrosis. In addition, Prof. García has demonstrated a strong relationship between cells adhesive force generation and FAK activation at individual focal adhesion (IFA). Despite the importance of FAK signalling in cancer and other pathologies, the mechanistic link between the FAK activity at individual focal adhesions and fibrosis remains elusive. To close this gap in our knowledge, there is a need to develop technologies capable of recapitulating dynamic force transmission at individual focal adhesions.

This project aims to elucidate the molecular events that regulate FAK activity during force transmission and sensing of mechanical force at individual focal adhesions. I will combine novel molecular devices, light-activated cell-specific adhesive ligands and microscopy tools to in situ apply controlled forces at individual FA and measure cell responses in 2D, 3D and in vivo contexts. Importantly, FAK loss- and gain-of-function experiments will provide the functional importance of FAK during mechanotransduction.

The fundamental investigation of mechanotransduction events will greatly advance our understanding of cell biology and inform future targets for fibrosis therapy, as mechanical forces is a driving factor in fibrosis progression.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/898737
Start date: 01-01-2021
End date: 31-12-2023
Total budget - Public funding: 264 669,12 Euro - 264 669,00 Euro
Cordis data

Original description

Mechanical forces drive fundamental physiological functions in living organisms, yet it remains unclear how forces are transduced into intracellular biochemical signals. Mechanotransduction is a tightly regulated process, and its disruption often results in pathologies including tumorigenesis, chronic inflammation and fibrotic conditions. Crucially, recent studies have shown an important relationship between abnormal fibrosis and altered patterns of focal adhesion kinase (FAK) activity and cell adhesion.

Prof. del Campo laboratory has pioneered the use of photo-triggerable ligands to spatiotemporally control cell adhesion and recently, Prof. García has demonstrated in vivo that spatiotemporal control of cell adhesion modulates fibrosis. In addition, Prof. García has demonstrated a strong relationship between cells adhesive force generation and FAK activation at individual focal adhesion (IFA). Despite the importance of FAK signalling in cancer and other pathologies, the mechanistic link between the FAK activity at individual focal adhesions and fibrosis remains elusive. To close this gap in our knowledge, there is a need to develop technologies capable of recapitulating dynamic force transmission at individual focal adhesions.

This project aims to elucidate the molecular events that regulate FAK activity during force transmission and sensing of mechanical force at individual focal adhesions. I will combine novel molecular devices, light-activated cell-specific adhesive ligands and microscopy tools to in situ apply controlled forces at individual FA and measure cell responses in 2D, 3D and in vivo contexts. Importantly, FAK loss- and gain-of-function experiments will provide the functional importance of FAK during mechanotransduction.

The fundamental investigation of mechanotransduction events will greatly advance our understanding of cell biology and inform future targets for fibrosis therapy, as mechanical forces is a driving factor in fibrosis progression.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019