Summary
Brain plasticity is well studied in the developing and early life, but how experiences can reshape the brain during adulthood is still poorly understood. Non-invasive medical imaging techniques point to the existence of broad functional readjustments in adult brain networks. However, a good understanding of the biological underpinnings of this phenomenon is lacking. Deciphering the nature of adult brain structural readjustments may lead to a breakthrough in our understanding of the mechanisms underlying many psychiatric and neurodegenerative disorders, and potentially lead to therapeutic alternatives for these highly prevalent diseases in a globally aging population. LongPlaNet seeks to study the dynamics of long-range projections in the adult brain. To reach this goal I will use an array of cutting-edge techniques allowing me to study WHOLE BRAIN CONNECTIVITY at a CELLULAR RESOLUTION in the context of ADULT BEHAVING MICE. I will start from a preliminary list I generated of candidate brain regions undergoing plastic readjustments following long-term sensory deprivation in the mouse. I will quantify using 3D whole brain imaging by light-sheet microscopy the structural changes of connectivity between these regions. I will then use RNA-seq and bioinformatic tools to find markers of neuronal plasticity. Finally, I will track by in vivo calcium imaging with two-photon microscopy the evolution of the receptor fields of neurons affected by plastic remodeling. The present action will pioneer the intersection of molecular, structural and functional characterization of a well known but poorly understood phenomenon of adult reorganization of neuronal networks.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/845685 |
Start date: | 01-10-2019 |
End date: | 11-11-2021 |
Total budget - Public funding: | 184 707,84 Euro - 184 707,00 Euro |
Cordis data
Original description
Brain plasticity is well studied in the developing and early life, but how experiences can reshape the brain during adulthood is still poorly understood. Non-invasive medical imaging techniques point to the existence of broad functional readjustments in adult brain networks. However, a good understanding of the biological underpinnings of this phenomenon is lacking. Deciphering the nature of adult brain structural readjustments may lead to a breakthrough in our understanding of the mechanisms underlying many psychiatric and neurodegenerative disorders, and potentially lead to therapeutic alternatives for these highly prevalent diseases in a globally aging population. LongPlaNet seeks to study the dynamics of long-range projections in the adult brain. To reach this goal I will use an array of cutting-edge techniques allowing me to study WHOLE BRAIN CONNECTIVITY at a CELLULAR RESOLUTION in the context of ADULT BEHAVING MICE. I will start from a preliminary list I generated of candidate brain regions undergoing plastic readjustments following long-term sensory deprivation in the mouse. I will quantify using 3D whole brain imaging by light-sheet microscopy the structural changes of connectivity between these regions. I will then use RNA-seq and bioinformatic tools to find markers of neuronal plasticity. Finally, I will track by in vivo calcium imaging with two-photon microscopy the evolution of the receptor fields of neurons affected by plastic remodeling. The present action will pioneer the intersection of molecular, structural and functional characterization of a well known but poorly understood phenomenon of adult reorganization of neuronal networks.Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)