SugarBlock | Unraveling the protein glycosylation of Plasmodium falciparum is crucial for development of novel therapeutics against malaria

Summary
Annually, malaria causes 200 million clinical cases and more than half a million deaths. Works carried out more than 40 years ago demonstrated that a malaria vaccine offering sterile protective immunity in humans was possible, but the efforts to develop a modern, recombinant ‘subunit’ malaria vaccine only confer short term protection against clinical malaria in 35-50% of recipients. Several evidences support the presence of foreign short N-glycans and other minor glycosylations in the surfaces of the parasite, Plasmodium faciparum, the causative agent of malaria. In addition, recent studies show that Plasmodium sporozoites present also unknown α-galactose containing antigens in their surface and that antibodies against them provide sterile protection against malaria in mice. We propose to completely characterize the protein glycosylation present in the surface of the extracellular sporozoites, that travel from the mosquito to the liver, and merozoites, that invade human erythrocytes. We will use different quasi-targeted glycoproteomic approaches, based on the expected simplicity and low variability of these glycosylations in the parasite surface and their affinity to well characterized lectins. The investigation of these uncommon parasitic glycosylations may expose an unexpected Achilles’ heel in the Plasmodium parasite that could be exploited to halt sporozoite development and/or stop merozoite invasion and induce protection against malaria, mimicking what has already been achieved using carbohydrate-protein conjugate vaccines against bacterial infections.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/703305
Start date: 29-08-2016
End date: 28-08-2018
Total budget - Public funding: 158 121,60 Euro - 158 121,00 Euro
Cordis data

Original description

Annually, malaria causes 200 million clinical cases and more than half a million deaths. Works carried out more than 40 years ago demonstrated that a malaria vaccine offering sterile protective immunity in humans was possible, but the efforts to develop a modern, recombinant ‘subunit’ malaria vaccine only confer short term protection against clinical malaria in 35-50% of recipients. Several evidences support the presence of foreign short N-glycans and other minor glycosylations in the surfaces of the parasite, Plasmodium faciparum, the causative agent of malaria. In addition, recent studies show that Plasmodium sporozoites present also unknown α-galactose containing antigens in their surface and that antibodies against them provide sterile protection against malaria in mice. We propose to completely characterize the protein glycosylation present in the surface of the extracellular sporozoites, that travel from the mosquito to the liver, and merozoites, that invade human erythrocytes. We will use different quasi-targeted glycoproteomic approaches, based on the expected simplicity and low variability of these glycosylations in the parasite surface and their affinity to well characterized lectins. The investigation of these uncommon parasitic glycosylations may expose an unexpected Achilles’ heel in the Plasmodium parasite that could be exploited to halt sporozoite development and/or stop merozoite invasion and induce protection against malaria, mimicking what has already been achieved using carbohydrate-protein conjugate vaccines against bacterial infections.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)