Alexander Krauss | The limits of the sciences in identifying causes and scientific laws

Summary
Scientists rarely question the scientific methods – and their related complex theory, strong assumptions and problematic quantitative techniques – used to generate the causes and laws in their particular scientific models, which is the guiding research question of this project. Better understanding the limits of using mathematical and statistical methods in science is important for research and policy, because these methods all lead to some degree of biased results and scientists using them often misguidedly claim to establish strong causal relationships. This research project will investigate the underlying assumptions of quantitative methods by critically assessing the leading, most cited academic studies across the sciences that all use some form of mathematical and statistical methods. By combining theoretical, methodological and empirical analysis, this research project will help disentangle the links between the actual methods applied by scientists and the causal effects and scientific laws they claim to identify in their models. Identified causes and laws need to always be understood in the context of the different methods used to express them. This research project thus aims to address the gaps in the literature on scientific methodology by providing insight and knowledge into the large set of important assumptions and limitations behind mathematical and statistical methods used to identify causes and scientific laws. By helping to increase awareness among scientists about these biases and constraints and by outlining ways to better combine multiple methods, this project also aims to help improve scientific practice. More broadly, it hopes to help improve how we understand scientific methodology and thus science and evidence-based policymaking.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/745447
Start date: 15-03-2017
End date: 14-03-2019
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

Scientists rarely question the scientific methods – and their related complex theory, strong assumptions and problematic quantitative techniques – used to generate the causes and laws in their particular scientific models, which is the guiding research question of this project. Better understanding the limits of using mathematical and statistical methods in science is important for research and policy, because these methods all lead to some degree of biased results and scientists using them often misguidedly claim to establish strong causal relationships. This research project will investigate the underlying assumptions of quantitative methods by critically assessing the leading, most cited academic studies across the sciences that all use some form of mathematical and statistical methods. By combining theoretical, methodological and empirical analysis, this research project will help disentangle the links between the actual methods applied by scientists and the causal effects and scientific laws they claim to identify in their models. Identified causes and laws need to always be understood in the context of the different methods used to express them. This research project thus aims to address the gaps in the literature on scientific methodology by providing insight and knowledge into the large set of important assumptions and limitations behind mathematical and statistical methods used to identify causes and scientific laws. By helping to increase awareness among scientists about these biases and constraints and by outlining ways to better combine multiple methods, this project also aims to help improve scientific practice. More broadly, it hopes to help improve how we understand scientific methodology and thus science and evidence-based policymaking.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016