IVSysImmunoProt | Development of an in vitro cellular model to predict the immunological impact of dietary proteins

Summary
As the world population continues to grow and a shortage of protein supply is foreseen, there is a need to identify new and sustainable protein sources. While these alternative proteins must be of high nutritional quality, they also need to be safe for consumption. Dietary proteins and their digestion products can influence a number of regulatory systems, including the immune system. By interacting with elements of the immune system, proteins can help balance and stabilize immune responses, but may also trigger adverse effects such as allergic reactions. While the effects of proteins and peptides on the adaptive immunity have been examined in a number of studies, few have studied how these molecules are absorbed through the small intestine and interact with the innate immune system. Since, in order to trigger an immune response proteins must first be transported across the intestinal wall and interact with the innate immune system, understanding these processes is key to determining the immunological effects of protein consumption. The aim of the proposed project is to develop an in vitro model to evaluate the impact of dietary proteins on the immune system. This research will first examine the uptake of proteins and their digests across the intestinal wall using cellular models mimicking the intestinal epithelium and subsequently investigate the effect of the absorbed proteins/peptides on the immune system’s key players, including the dendritic and T cells. The model system that this research aims to develop could help shed light on the roles played by dietary proteins in regulating intestinal immunity and serve as a tool to evaluate the immunological properties of novel and sustainable proteins. Thus, this research is of relevance not only to the European food industry, but also to public health.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/703929
Start date: 01-09-2016
End date: 31-08-2018
Total budget - Public funding: 165 598,80 Euro - 165 598,00 Euro
Cordis data

Original description

As the world population continues to grow and a shortage of protein supply is foreseen, there is a need to identify new and sustainable protein sources. While these alternative proteins must be of high nutritional quality, they also need to be safe for consumption. Dietary proteins and their digestion products can influence a number of regulatory systems, including the immune system. By interacting with elements of the immune system, proteins can help balance and stabilize immune responses, but may also trigger adverse effects such as allergic reactions. While the effects of proteins and peptides on the adaptive immunity have been examined in a number of studies, few have studied how these molecules are absorbed through the small intestine and interact with the innate immune system. Since, in order to trigger an immune response proteins must first be transported across the intestinal wall and interact with the innate immune system, understanding these processes is key to determining the immunological effects of protein consumption. The aim of the proposed project is to develop an in vitro model to evaluate the impact of dietary proteins on the immune system. This research will first examine the uptake of proteins and their digests across the intestinal wall using cellular models mimicking the intestinal epithelium and subsequently investigate the effect of the absorbed proteins/peptides on the immune system’s key players, including the dendritic and T cells. The model system that this research aims to develop could help shed light on the roles played by dietary proteins in regulating intestinal immunity and serve as a tool to evaluate the immunological properties of novel and sustainable proteins. Thus, this research is of relevance not only to the European food industry, but also to public health.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)