Summary
The CRYDIS exchange programme will establish and support international and inter-sectoral transfer of knowledge and expertise in pharmaceutical and instrument science between several EU research institutes and industrial companies. It will also enhance understanding of the value of inter-sectoral exchange mechanisms for taking research to market.
CRYDIS undertakes innovative, collaborative research on the clinically-important topic of dissolution of drug substance particles in bio-relevant media and the undesired subsequent nucleation and re-precipitation of the drug prior to its absorption.
Using innovative advances in UV imaging technology, CRYDIS investigates the utility of novel dissolution assays as key tools to obtain fundamental data on the mechanism and kinetics of undesired nucleation and re-precipitation during or following dissolution, a significant problem for the pharmaceutical industry which struggles to obtain sufficient exposure to poorly soluble drug substances to ensure an effective dose is absorbed by the patient.
The key technologies in this proposal offer a step change in capability and functionality, offering the potential to undertake more detailed studies of the dissolution/re-precipitation processes relevant to pharmaceutical materials. Access to this key technology and the further development of its capability offers the potential for breakthroughs in development of process understanding and of robust and widely applicable protocols.
Additional value is brought to CRYDIS through close working with synergistic European networks, leveraging a greater knowledge input and impact outreach.
Running parallel with the science programme, an innovation management work-package analyses effectiveness of the exchange mechanism in building a shared culture, transferring knowledge and developing understanding of processes that drive a product to market. The outcomes of this will be used to advise and drive potential future exchange activities.
CRYDIS undertakes innovative, collaborative research on the clinically-important topic of dissolution of drug substance particles in bio-relevant media and the undesired subsequent nucleation and re-precipitation of the drug prior to its absorption.
Using innovative advances in UV imaging technology, CRYDIS investigates the utility of novel dissolution assays as key tools to obtain fundamental data on the mechanism and kinetics of undesired nucleation and re-precipitation during or following dissolution, a significant problem for the pharmaceutical industry which struggles to obtain sufficient exposure to poorly soluble drug substances to ensure an effective dose is absorbed by the patient.
The key technologies in this proposal offer a step change in capability and functionality, offering the potential to undertake more detailed studies of the dissolution/re-precipitation processes relevant to pharmaceutical materials. Access to this key technology and the further development of its capability offers the potential for breakthroughs in development of process understanding and of robust and widely applicable protocols.
Additional value is brought to CRYDIS through close working with synergistic European networks, leveraging a greater knowledge input and impact outreach.
Running parallel with the science programme, an innovation management work-package analyses effectiveness of the exchange mechanism in building a shared culture, transferring knowledge and developing understanding of processes that drive a product to market. The outcomes of this will be used to advise and drive potential future exchange activities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/644056 |
Start date: | 01-01-2015 |
End date: | 31-12-2018 |
Total budget - Public funding: | 216 000,00 Euro - 216 000,00 Euro |
Cordis data
Original description
The CRYDIS exchange programme will establish and support international and inter-sectoral transfer of knowledge and expertise in pharmaceutical and instrument science between several EU research institutes and industrial companies. It will also enhance understanding of the value of inter-sectoral exchange mechanisms for taking research to market.CRYDIS undertakes innovative, collaborative research on the clinically-important topic of dissolution of drug substance particles in bio-relevant media and the undesired subsequent nucleation and re-precipitation of the drug prior to its absorption.
Using innovative advances in UV imaging technology, CRYDIS investigates the utility of novel dissolution assays as key tools to obtain fundamental data on the mechanism and kinetics of undesired nucleation and re-precipitation during or following dissolution, a significant problem for the pharmaceutical industry which struggles to obtain sufficient exposure to poorly soluble drug substances to ensure an effective dose is absorbed by the patient.
The key technologies in this proposal offer a step change in capability and functionality, offering the potential to undertake more detailed studies of the dissolution/re-precipitation processes relevant to pharmaceutical materials. Access to this key technology and the further development of its capability offers the potential for breakthroughs in development of process understanding and of robust and widely applicable protocols.
Additional value is brought to CRYDIS through close working with synergistic European networks, leveraging a greater knowledge input and impact outreach.
Running parallel with the science programme, an innovation management work-package analyses effectiveness of the exchange mechanism in building a shared culture, transferring knowledge and developing understanding of processes that drive a product to market. The outcomes of this will be used to advise and drive potential future exchange activities.
Status
CLOSEDCall topic
MSCA-RISE-2014Update Date
28-04-2024
Images
No images available.
Geographical location(s)