BESG | Bioengineered exosomes based approaches for the effective treatment of non-small cell lung cancer

Summary
ABSTRACT: Lung cancer is the principal cause of cancer-related death around the world and has become more predominant among former than current smokers. Smoking, alcoholism, air pollution, occupational exposure are among the main causes of non-small cell lung cancer (NSCLCs). It is difficult to simultaneously deliver therapeutics and nucleic acid to the target site. With the advancement of nanotechnology, a delivery system composing of cellular proteins which can bypass the reticuloendothelial system (RES) and have the ability to release payload at the specific target site is the necessity of the current era. Exosomes (Exo) are clinically acceptable, having protein membrane composition and the ability to deliver payload at specific target sites. Having endogenous origin, Exo evade immune recognition and clearance compared to exogenous nanovesicles. Exo are natural carriers of nucleic acids and they can be engineered to deliver siRNA as well as anti-cancer drugs. In this we propose the conjugation or covering of mesenchymal stromal cells (MSCs) derived exosomes with HSP4 peptide (target specific to NSCLCs) and loading them with Gefitinib (GEF), an EGFR inhibitor and SPC24 siRNA (target for NSCLCs and metastasis). The delivery of GEF and SPC24 siRNA using bioengineered exosomes (BESG) will reduce their dosage; improve patient compliance and life expectancy of patients. BESG will be evaluated for their uptake mechanisms and their mechanism of action in cell culture models of NSCLCs. BESG will specifically target the NSCLCs and release its payloads at cancer site. The underlying mechanisms, pharmacokinetics, biodistribution and anti-cancer activity will be evaluated in xenograft model of NSCLCs using advance imaging technologies. The BESG developed during this program will have a clinical potential and the trainings obtained through this program will help in career advancement in the area of drug delivery and precision medicine.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/890507
Start date: 01-10-2020
End date: 30-09-2022
Total budget - Public funding: 175 572,48 Euro - 175 572,00 Euro
Cordis data

Original description

ABSTRACT: Lung cancer is the principal cause of cancer-related death around the world and has become more predominant among former than current smokers. Smoking, alcoholism, air pollution, occupational exposure are among the main causes of non-small cell lung cancer (NSCLCs). It is difficult to simultaneously deliver therapeutics and nucleic acid to the target site. With the advancement of nanotechnology, a delivery system composing of cellular proteins which can bypass the reticuloendothelial system (RES) and have the ability to release payload at the specific target site is the necessity of the current era. Exosomes (Exo) are clinically acceptable, having protein membrane composition and the ability to deliver payload at specific target sites. Having endogenous origin, Exo evade immune recognition and clearance compared to exogenous nanovesicles. Exo are natural carriers of nucleic acids and they can be engineered to deliver siRNA as well as anti-cancer drugs. In this we propose the conjugation or covering of mesenchymal stromal cells (MSCs) derived exosomes with HSP4 peptide (target specific to NSCLCs) and loading them with Gefitinib (GEF), an EGFR inhibitor and SPC24 siRNA (target for NSCLCs and metastasis). The delivery of GEF and SPC24 siRNA using bioengineered exosomes (BESG) will reduce their dosage; improve patient compliance and life expectancy of patients. BESG will be evaluated for their uptake mechanisms and their mechanism of action in cell culture models of NSCLCs. BESG will specifically target the NSCLCs and release its payloads at cancer site. The underlying mechanisms, pharmacokinetics, biodistribution and anti-cancer activity will be evaluated in xenograft model of NSCLCs using advance imaging technologies. The BESG developed during this program will have a clinical potential and the trainings obtained through this program will help in career advancement in the area of drug delivery and precision medicine.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019