Summary
MImETIC INDiRECT aims to develop a standardised, accessible, versatile organ-on-chip toolkit for cancer biology and drug discovery research, compatible with microscopy-based (live imaging and confocal) techniques. The project is expected to facilitate academia and industry adoption of microfluidic 3D cell culture systems for comparable and reproducible results in a complex biomimetic animal free model for cancer drug discovery, toxicology, advanced (pre)clinical as well as personalized medicine. The toolkit components will consist of an integrated temperature controller dual-chamber chip, the Cherry Biotech CubiX system and growth factor optimized collagenous solutions for each chip chamber. The dual chamber chip, with cellular migration lanes, will have two tailored collagen-based formulations, designed per chamber. The CubiX platform is a compact flow and temperature controller, allowing optional sensor (e.g. O2) integration, compatible with single chips or 24-well plates. The cancer(s) sub-types to be used toolkit standardization will be dictated by market needs, where commercial cell lines (cancerous and non-cancerous) will be used to create the microvascularized complex tissue model. Potential project risks have been identified with appropriate mitigation strategies, where the project promotes adoption of standardized, cost-effective and versatile cancer organ-on-chip platforms in the market, rather than disruptive academic findings. Access of the aforementioned system to a worldwide growth market will fully exploit the project results, disseminated by direct and indirect marketing and scientific approaches. Project implementation will be an academic-industry collaborative and multidisciplinary manner providing the acquisition of diverse and unconventional complementary skills, leading to an understanding of both sectors requirements. We envision the above-mentioned to facilitate future academic and industry collaborations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/840577 |
Start date: | 01-08-2019 |
End date: | 31-07-2021 |
Total budget - Public funding: | 196 707,84 Euro - 196 707,00 Euro |
Cordis data
Original description
MImETIC INDiRECT aims to develop a standardised, accessible, versatile organ-on-chip toolkit for cancer biology and drug discovery research, compatible with microscopy-based (live imaging and confocal) techniques. The project is expected to facilitate academia and industry adoption of microfluidic 3D cell culture systems for comparable and reproducible results in a complex biomimetic animal free model for cancer drug discovery, toxicology, advanced (pre)clinical as well as personalized medicine. The toolkit components will consist of an integrated temperature controller dual-chamber chip, the Cherry Biotech CubiX system and growth factor optimized collagenous solutions for each chip chamber. The dual chamber chip, with cellular migration lanes, will have two tailored collagen-based formulations, designed per chamber. The CubiX platform is a compact flow and temperature controller, allowing optional sensor (e.g. O2) integration, compatible with single chips or 24-well plates. The cancer(s) sub-types to be used toolkit standardization will be dictated by market needs, where commercial cell lines (cancerous and non-cancerous) will be used to create the microvascularized complex tissue model. Potential project risks have been identified with appropriate mitigation strategies, where the project promotes adoption of standardized, cost-effective and versatile cancer organ-on-chip platforms in the market, rather than disruptive academic findings. Access of the aforementioned system to a worldwide growth market will fully exploit the project results, disseminated by direct and indirect marketing and scientific approaches. Project implementation will be an academic-industry collaborative and multidisciplinary manner providing the acquisition of diverse and unconventional complementary skills, leading to an understanding of both sectors requirements. We envision the above-mentioned to facilitate future academic and industry collaborations.Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)