GENOMEPEP | UNCOVERING PATHOGENIC MICROPEPTIDES FROM THE HUMAN GENOME

Summary
The human genome is over 3 billion nucleotides long, yet only 1,5% of it codes for proteins. In recent years, a striking number of regions of the genome have been discovered to be capable of being transcribed and translated into short polypeptides. These micropeptides comprise of less than 100 amino acids and to date, more than 160 000 different micropeptides have been catalogued within human tissues. These protein products are hypothesized to participate in numerous molecular, cellular and physiological processes, yet the function of but a few micropeptides has been identified. Subsequently, due to its largely unknown functionality, the micropeptidome is commonly overlooked during genomic studies.
Due to increasing life expectancy and detrimental lifestyle habits, the European population can be considered to be a high-risk population for cardiovascular diseases, which cause millions of deaths per annum, while taking a tremendous financial toll on the regional economy. GENOMEPEP aims to pinpoint novel micropeptides participating in the pathogenesis of cardiovascular diseases by investigating the genetic variation within the micropeptidome-encoding genome in correlation to existing common cardiovascular phenotypes in population. This will be achieved by establishing a computational analysis pipeline based on biometric, genotype and health records data available within the Estonian and Finnish biobanks. The identification of novel pathogenic genes and the development of guidelines to investigate the micropeptidome would assist in the advancement of research, diagnostic medicine and pharmacology both in public and private sectors.
The results of GENOMEPEP will address the CVD research aspect highlighted in “Societal Challenge 1” work program of Horizon 2020, as well as improve other research priorities set by Horizon 2020, e.g. the progression of personalized medicine and support the decrease of economic burden by healthcare.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/894987
Start date: 01-09-2020
End date: 01-01-2024
Total budget - Public funding: 213 289,92 Euro - 213 289,00 Euro
Cordis data

Original description

The human genome is over 3 billion nucleotides long, yet only 1,5% of it codes for proteins. In recent years, a striking number of regions of the genome have been discovered to be capable of being transcribed and translated into short polypeptides. These micropeptides comprise of less than 100 amino acids and to date, more than 160 000 different micropeptides have been catalogued within human tissues. These protein products are hypothesized to participate in numerous molecular, cellular and physiological processes, yet the function of but a few micropeptides has been identified. Subsequently, due to its largely unknown functionality, the micropeptidome is commonly overlooked during genomic studies.
Due to increasing life expectancy and detrimental lifestyle habits, the European population can be considered to be a high-risk population for cardiovascular diseases, which cause millions of deaths per annum, while taking a tremendous financial toll on the regional economy. GENOMEPEP aims to pinpoint novel micropeptides participating in the pathogenesis of cardiovascular diseases by investigating the genetic variation within the micropeptidome-encoding genome in correlation to existing common cardiovascular phenotypes in population. This will be achieved by establishing a computational analysis pipeline based on biometric, genotype and health records data available within the Estonian and Finnish biobanks. The identification of novel pathogenic genes and the development of guidelines to investigate the micropeptidome would assist in the advancement of research, diagnostic medicine and pharmacology both in public and private sectors.
The results of GENOMEPEP will address the CVD research aspect highlighted in “Societal Challenge 1” work program of Horizon 2020, as well as improve other research priorities set by Horizon 2020, e.g. the progression of personalized medicine and support the decrease of economic burden by healthcare.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019