Summary
Understanding how stem cells differentiate into the myriad of cell types that compose an organism is a fundamental question in biomedical sciences. The recent development of single-cell transcriptomic techniques has already allowed the study of the cell composition of organs and tissues, developmental stages, and even whole adult organisms. Yet, in most cases, these studies are primarily descriptive and often provide little insight into the mechanisms regulating gene expression during cell differentiation.
Here, I propose to study the role of alternative polyadenylation (APA) and associated RNA binding proteins (RBPs) in neuronal differentiation. For this purpose, I will: (i) develop new computational tools to detect and quantify APA events from single-cell transcriptomics data; and (ii) perform a single-cell-based functional CRISPR screen. The results obtained from this study will provide an in depth analysis of the changes in gene expression and APA during neuronal differentiation at a single cell resolution and identify dozens of APA targets specifically associated with individual RBPs.
Together, this study will provide a solid molecular knowledge of the role of APA in neural differentiation, enabling the development of new personalized medicine therapies, which is in compliance with the Horizon H2020 Health demographic change and wellbeing programme.
Here, I propose to study the role of alternative polyadenylation (APA) and associated RNA binding proteins (RBPs) in neuronal differentiation. For this purpose, I will: (i) develop new computational tools to detect and quantify APA events from single-cell transcriptomics data; and (ii) perform a single-cell-based functional CRISPR screen. The results obtained from this study will provide an in depth analysis of the changes in gene expression and APA during neuronal differentiation at a single cell resolution and identify dozens of APA targets specifically associated with individual RBPs.
Together, this study will provide a solid molecular knowledge of the role of APA in neural differentiation, enabling the development of new personalized medicine therapies, which is in compliance with the Horizon H2020 Health demographic change and wellbeing programme.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/840252 |
Start date: | 01-04-2019 |
End date: | 31-03-2021 |
Total budget - Public funding: | 160 932,48 Euro - 160 932,00 Euro |
Cordis data
Original description
Understanding how stem cells differentiate into the myriad of cell types that compose an organism is a fundamental question in biomedical sciences. The recent development of single-cell transcriptomic techniques has already allowed the study of the cell composition of organs and tissues, developmental stages, and even whole adult organisms. Yet, in most cases, these studies are primarily descriptive and often provide little insight into the mechanisms regulating gene expression during cell differentiation.Here, I propose to study the role of alternative polyadenylation (APA) and associated RNA binding proteins (RBPs) in neuronal differentiation. For this purpose, I will: (i) develop new computational tools to detect and quantify APA events from single-cell transcriptomics data; and (ii) perform a single-cell-based functional CRISPR screen. The results obtained from this study will provide an in depth analysis of the changes in gene expression and APA during neuronal differentiation at a single cell resolution and identify dozens of APA targets specifically associated with individual RBPs.
Together, this study will provide a solid molecular knowledge of the role of APA in neural differentiation, enabling the development of new personalized medicine therapies, which is in compliance with the Horizon H2020 Health demographic change and wellbeing programme.
Status
TERMINATEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)