Summary
Lignocellulosic biomass (LCB) is a renewable and inexhaustible carbon source on Earth and its valorisation will drive sustainable circular bioeconomy. Microorganisms involved in LCB deconstruction produce a huge repertoire of carbohydrate active enzymes (CAZymes) in order to utilize LCB as carbon source. Specifically, Bacteroides, encode fine-tuned gene clusters dedicated to polysaccharide metabolism called Polysaccharide Utilization Loci (PUL). The host team recently discovered a xylan PUL from termite gut whose enzymes showed promising activity on different LCB. In EvoXUL project an original co-evolution strategy will be deployed to simultaneously engineer XUL’s enzymes towards wheat bran and wheat straw hydrolysis. In addition, a combination of enzyme assemblies will be created thanks to the Bio Molecular Welding Jo-In system to further maximize the synergy between the catalysts and to unravel the impact of enzyme spatial organization with the goal of developing more efficient enzyme cocktails for bioeconomy. The fellow and members of the French National Institute for Applied Sciences of Toulouse (INSA Toulouse) will establish a successful collaboration plan on the basis of their respective backgrounds in hydrolases involved in biomass valorisation (biochemistry, applied enzymology, bioprocess engineering) and protein evolution, engineering, and functional characterization of glycoside hydrolases, respectively. The acquired knowledge in structure and synergism of modular enzymes will provide rules for tailor made enzyme assemblies for future industrial applications related with lignocellulosic feedstock biorefinery. The project will provide an in depth training in molecular biology, protein engineering and structure-function of carbohydrate modifying enzymes.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/897655 |
Start date: | 11-01-2021 |
End date: | 10-01-2023 |
Total budget - Public funding: | 184 707,84 Euro - 184 707,00 Euro |
Cordis data
Original description
Lignocellulosic biomass (LCB) is a renewable and inexhaustible carbon source on Earth and its valorisation will drive sustainable circular bioeconomy. Microorganisms involved in LCB deconstruction produce a huge repertoire of carbohydrate active enzymes (CAZymes) in order to utilize LCB as carbon source. Specifically, Bacteroides, encode fine-tuned gene clusters dedicated to polysaccharide metabolism called Polysaccharide Utilization Loci (PUL). The host team recently discovered a xylan PUL from termite gut whose enzymes showed promising activity on different LCB. In EvoXUL project an original co-evolution strategy will be deployed to simultaneously engineer XUL’s enzymes towards wheat bran and wheat straw hydrolysis. In addition, a combination of enzyme assemblies will be created thanks to the Bio Molecular Welding Jo-In system to further maximize the synergy between the catalysts and to unravel the impact of enzyme spatial organization with the goal of developing more efficient enzyme cocktails for bioeconomy. The fellow and members of the French National Institute for Applied Sciences of Toulouse (INSA Toulouse) will establish a successful collaboration plan on the basis of their respective backgrounds in hydrolases involved in biomass valorisation (biochemistry, applied enzymology, bioprocess engineering) and protein evolution, engineering, and functional characterization of glycoside hydrolases, respectively. The acquired knowledge in structure and synergism of modular enzymes will provide rules for tailor made enzyme assemblies for future industrial applications related with lignocellulosic feedstock biorefinery. The project will provide an in depth training in molecular biology, protein engineering and structure-function of carbohydrate modifying enzymes.Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)