GlycoImaging | Imaging and detection of tumor-associated glycan structures on tumor cells

Summary
The overall objective of Glyco Imaging is to develop novel assays for detection of glycans as biomarkers associated with aggressive and metastatic cancer forms. The assays will be developed for biomarker detection in blood, urine, cells and tissue. Molecularly Imprinted Polymers (MIPs), or plastic antibodies, have been developed for targeting the human glycan sialic acid (SA), or Neu5Ac. The efficiency of the Neu5Ac specific SAMIPs targeted to the biomarker SA in different solvents (methanol, water, phosphate buffer) will be exploited. The non-human Neu5Gc, which is incorporated into human glycoconjugates through dietary sources such as red meat, and shown to be involved in malignant cell transformation in humans, will also be investigated by using highly specific Neu5Gc-SAMIPs. The imaging and detection techniques used will be based on fluorescence, 3D-viewing of cancer cells by digital holographic microscopy and magnetic separation columns.
The results in this research consortium will lead to major technological advances having impact on 1) health care, since it will develop more accurate and reliable diagnostics of aggressive and metastatic cancers, 2) drug discovery allowing a faster and cheaper biomarker targeting and detection; and 3) biochemistry research laboratories in resulting in improved understanding of glycan expression in cancer, with emphasis on aggressive metastatic cancer. The training of researchers will be performed by a consortium consisting of 6 partners with biomedical, imaging and particle synthesis skills (4 groups, one institution, one technology company). This forms the basis for a very competent interdisciplinary training program with high quality in both education and research.

8 early stage researchers (ESRs) working on specific tasks within 5 work packages will follow a rich training program providing a well-balanced spectrum of scientific, business and entrepreneurial skills.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/721297
Start date: 01-04-2017
End date: 30-09-2021
Total budget - Public funding: 2 138 720,04 Euro - 2 138 720,00 Euro
Cordis data

Original description

The overall objective of Glyco Imaging is to develop novel assays for detection of glycans as biomarkers associated with aggressive and metastatic cancer forms. The assays will be developed for biomarker detection in blood, urine, cells and tissue. Molecularly Imprinted Polymers (MIPs), or plastic antibodies, have been developed for targeting the human glycan sialic acid (SA), or Neu5Ac. The efficiency of the Neu5Ac specific SAMIPs targeted to the biomarker SA in different solvents (methanol, water, phosphate buffer) will be exploited. The non-human Neu5Gc, which is incorporated into human glycoconjugates through dietary sources such as red meat, and shown to be involved in malignant cell transformation in humans, will also be investigated by using highly specific Neu5Gc-SAMIPs. The imaging and detection techniques used will be based on fluorescence, 3D-viewing of cancer cells by digital holographic microscopy and magnetic separation columns.
The results in this research consortium will lead to major technological advances having impact on 1) health care, since it will develop more accurate and reliable diagnostics of aggressive and metastatic cancers, 2) drug discovery allowing a faster and cheaper biomarker targeting and detection; and 3) biochemistry research laboratories in resulting in improved understanding of glycan expression in cancer, with emphasis on aggressive metastatic cancer. The training of researchers will be performed by a consortium consisting of 6 partners with biomedical, imaging and particle synthesis skills (4 groups, one institution, one technology company). This forms the basis for a very competent interdisciplinary training program with high quality in both education and research.

8 early stage researchers (ESRs) working on specific tasks within 5 work packages will follow a rich training program providing a well-balanced spectrum of scientific, business and entrepreneurial skills.

Status

CLOSED

Call topic

MSCA-ITN-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2016
MSCA-ITN-2016