SWEET-PI | Aromatic stacking in Glycochemistry: can glycosidations be tamed?

Summary
Progress in chemical synthesis has provided access to a large variety of complex glycostructures, having a major impact in the expansion of Glycoscience. Central to carbohydrate chemistry is the glycosidation reaction, which involves the formation of a glycosidic bond between donor and acceptor molecules. It is commonly accepted that this process requires the formation of transient ionic species, whose stability, conformational properties and interactions determine to a large extend the reaction outcome. In principle, these elusive species are stabilized by means of inter- and intramolecular interactions, and in fact, this is a key feature for the activity of glycosidases and glycosyltransferases, typically requiring the participation of electron-rich functional groups, such as carboxylates. Interestingly, aromatic/carbohydrate interactions have too been detected and evaluated as supramolecular recognition motifs but, to the best of our knowledge, never at the reaction intermediate level, despite being frequently invoked to play a major role during enzymatic catalysis. Our hypothesis in this project revolves around the idea that stacking interactions involving electron-rich aromatic systems can be employed to stabilize the glycosyl oxocarbenium ion and to enhance the glycosyl acceptor reactivity; in the first case, these contacts might increase the life-time of the cationic intermediates, facilitating their detection and potentially allowing the modulation of the glycosidic donor in order to better control the stereochemical course of the reaction. Alternatively, CH/pi complexes involving the glycosyl acceptor could enhance the electron density of the reactive functional group, thus its nucleophilicity. This project aims to test both aspects of the carbohydrate/aromatic interaction employing a bioorganic approach based on the design, synthesis and systematic analysis of appropriate molecular models.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841824
Start date: 01-01-2020
End date: 31-12-2021
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

Progress in chemical synthesis has provided access to a large variety of complex glycostructures, having a major impact in the expansion of Glycoscience. Central to carbohydrate chemistry is the glycosidation reaction, which involves the formation of a glycosidic bond between donor and acceptor molecules. It is commonly accepted that this process requires the formation of transient ionic species, whose stability, conformational properties and interactions determine to a large extend the reaction outcome. In principle, these elusive species are stabilized by means of inter- and intramolecular interactions, and in fact, this is a key feature for the activity of glycosidases and glycosyltransferases, typically requiring the participation of electron-rich functional groups, such as carboxylates. Interestingly, aromatic/carbohydrate interactions have too been detected and evaluated as supramolecular recognition motifs but, to the best of our knowledge, never at the reaction intermediate level, despite being frequently invoked to play a major role during enzymatic catalysis. Our hypothesis in this project revolves around the idea that stacking interactions involving electron-rich aromatic systems can be employed to stabilize the glycosyl oxocarbenium ion and to enhance the glycosyl acceptor reactivity; in the first case, these contacts might increase the life-time of the cationic intermediates, facilitating their detection and potentially allowing the modulation of the glycosidic donor in order to better control the stereochemical course of the reaction. Alternatively, CH/pi complexes involving the glycosyl acceptor could enhance the electron density of the reactive functional group, thus its nucleophilicity. This project aims to test both aspects of the carbohydrate/aromatic interaction employing a bioorganic approach based on the design, synthesis and systematic analysis of appropriate molecular models.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018