PATGlycoPrint | Development of a new process analytical technology based on an innovative nanoplasmonic detection array for monitoring glycosylation of monoclonal antibodies

Summary
Glycosylation of therapeutic antibodies is one of the most critical quality attributes (CQAs) in biopharmaceutical manufacturing because of its strong impact to the treatment efficacy. Many parameters in the production process including upstream cell culture and downstream purification can significantly change the antibody glycosylation profiles. Therefore, monitoring and quality controlling of glycosylation is central to ensure high quality and consistent products. Unfortunately, this requires advanced analytical equipment and procedures that are expensive and time consuming and not suitable for on-line applications. Process analytical technologies that enable real-time monitoring of glycosylation during the production process would thus be a game changer in the biopharma industry. The aim of this research action is to develop and evaluate a new process analytical technology based on an innovative nanoplasmonic glycan-binding array that can detect the glycosylation patterns of downstream and upstream samples immediately or in a few minutes, respectively. The proposal is established to support the experienced researcher (ER), who wish to resume research in Sweden after a career break, and to enhance the ER´s employment opportunities in both academic and industrial sectors by an extensive two-way exchange of knowledge between the host and the ER as well as innovation and networking opportunities. The research project includes different branches of knowledge including biosensors, nanomaterials, biomanufacturing, analytical chemistry as well as surface, organic and peptide chemistry. In line with the MSCA-2018 Work Programme, this broad interdisciplinary training is expected to diversify the ER competence and greatly impact the ER’s future career while developing and exploring new technologies that can dramatically improve current strategies for bioproduction.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841373
Start date: 01-05-2019
End date: 30-04-2021
Total budget - Public funding: 203 852,16 Euro - 203 852,00 Euro
Cordis data

Original description

Glycosylation of therapeutic antibodies is one of the most critical quality attributes (CQAs) in biopharmaceutical manufacturing because of its strong impact to the treatment efficacy. Many parameters in the production process including upstream cell culture and downstream purification can significantly change the antibody glycosylation profiles. Therefore, monitoring and quality controlling of glycosylation is central to ensure high quality and consistent products. Unfortunately, this requires advanced analytical equipment and procedures that are expensive and time consuming and not suitable for on-line applications. Process analytical technologies that enable real-time monitoring of glycosylation during the production process would thus be a game changer in the biopharma industry. The aim of this research action is to develop and evaluate a new process analytical technology based on an innovative nanoplasmonic glycan-binding array that can detect the glycosylation patterns of downstream and upstream samples immediately or in a few minutes, respectively. The proposal is established to support the experienced researcher (ER), who wish to resume research in Sweden after a career break, and to enhance the ER´s employment opportunities in both academic and industrial sectors by an extensive two-way exchange of knowledge between the host and the ER as well as innovation and networking opportunities. The research project includes different branches of knowledge including biosensors, nanomaterials, biomanufacturing, analytical chemistry as well as surface, organic and peptide chemistry. In line with the MSCA-2018 Work Programme, this broad interdisciplinary training is expected to diversify the ER competence and greatly impact the ER’s future career while developing and exploring new technologies that can dramatically improve current strategies for bioproduction.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018