TopNanoBiosen | Rationally optimized, nanostructure-based biosensors for multi-biomarker cancer diagnostics

Summary
While electrochemical biosensors are attractive methods of cancer detection, thanks to their low cost and ease of use, nanostructured materials (NSM) are being widely utilized as their biosensing elements due to large surface-to-volume ratio and high sensitivity to external charge transfer. Despite the promise of high performance, current NSM-based electrochemical biosensors for cancer detection focus on one NSM analyzing only a single biomarker type, which makes them unsuitable for low-concentration biomarker detection as required in the analysis of bodily fluids. The combination of several biomarkers has both conceptual and experimental challenges, since different biomarkers have different requirements on the NSM type with different chemistry and transduction mechanisms. Thus, the morphological and physical differences have to be considered for co-integrating such diverse NSMs. I propose to elucidate the effect of NSM morphologies, compositions, and junctions on the operation, sensitivity, and fabricability of biosensors for cancer detection. This goal will be achieved by employing realistic carrier conduction simulations of state-of-the-art NSM assemblies with varying morphology, geometry, and transduction mechanisms to external stimuli. Using my expertise on complex-network-based modelling, the proposed project will provide guidelines for the design of nanostructured devices for optimal biosensors, and allow extrapolation towards the highest achievable performance. This knowledge will inform the fabrication of assay-type electrochemical biosensors for applications in cancer diagnostics. The strong multidisciplinary nature of the project will benefit from the complementary expertise between me and the host institution, enabling a synergy of fundamental advances and application-oriented research. My proposal opens up a new route for achieving high sensitivity biosensing for future diagnostics and therapeutics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030683
Start date: 01-09-2022
End date: 30-06-2025
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

While electrochemical biosensors are attractive methods of cancer detection, thanks to their low cost and ease of use, nanostructured materials (NSM) are being widely utilized as their biosensing elements due to large surface-to-volume ratio and high sensitivity to external charge transfer. Despite the promise of high performance, current NSM-based electrochemical biosensors for cancer detection focus on one NSM analyzing only a single biomarker type, which makes them unsuitable for low-concentration biomarker detection as required in the analysis of bodily fluids. The combination of several biomarkers has both conceptual and experimental challenges, since different biomarkers have different requirements on the NSM type with different chemistry and transduction mechanisms. Thus, the morphological and physical differences have to be considered for co-integrating such diverse NSMs. I propose to elucidate the effect of NSM morphologies, compositions, and junctions on the operation, sensitivity, and fabricability of biosensors for cancer detection. This goal will be achieved by employing realistic carrier conduction simulations of state-of-the-art NSM assemblies with varying morphology, geometry, and transduction mechanisms to external stimuli. Using my expertise on complex-network-based modelling, the proposed project will provide guidelines for the design of nanostructured devices for optimal biosensors, and allow extrapolation towards the highest achievable performance. This knowledge will inform the fabrication of assay-type electrochemical biosensors for applications in cancer diagnostics. The strong multidisciplinary nature of the project will benefit from the complementary expertise between me and the host institution, enabling a synergy of fundamental advances and application-oriented research. My proposal opens up a new route for achieving high sensitivity biosensing for future diagnostics and therapeutics.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships