ProtoMet | Protometabolic pathways: exploring the chemical roots of systems biology

Summary
Understanding how prebiotic chemistry gave rise to life as we know it represents one of the greatest enduring mysteries. The complete absence of a historical record requires the collaboration of scientists from different disciplines with access to advanced tools in order to make any meaningful progress. Here, we plan to exploit this tremendous challenge to train a new generation of scientists to think big, but also to work methodically and logically alongside colleagues from academia and industry. Eight Early-Stage Researchers (ESRs) will be recruited to work in laboratories with expertise in systems chemistry, synthetic biology, microfluidics, and science philosophy to develop together a reconstituted protometabolism within compartments consisting of coacervates, vesicles, coacervate containing vesicles, and compartments etched into microfluidic chips. The underlying protometabolism will be composed of triose glycolysis and a reverse citric acid cycle and will be regulated by (metallo)peptide catalysts. Importantly, the protometabolism will support the maintenance of the compartment that houses the protocell. The ESRs that primarily focus on the construction of compartments that mimic protocellular structures will gain firsthand experience in how their formulations could be exploited as drug delivery vehicles through secondments at partner organizations. Similarly, the ESRs that develop (metallo)peptide catalysts will apply their newfound skills to the development of drug molecules through a secondment at a company that specializes in metallodrug formulations. Ultimately, by becoming experts in elucidating the chemical underpinnings of all known living cells, the ESRs will be extremely well positioned to enter a wide variety of research fields from synthetic biology to medicinal chemistry in either industry or academia.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/813873
Start date: 01-11-2018
End date: 31-10-2023
Total budget - Public funding: 2 174 048,28 Euro - 2 174 048,00 Euro
Cordis data

Original description

Understanding how prebiotic chemistry gave rise to life as we know it represents one of the greatest enduring mysteries. The complete absence of a historical record requires the collaboration of scientists from different disciplines with access to advanced tools in order to make any meaningful progress. Here, we plan to exploit this tremendous challenge to train a new generation of scientists to think big, but also to work methodically and logically alongside colleagues from academia and industry. Eight Early-Stage Researchers (ESRs) will be recruited to work in laboratories with expertise in systems chemistry, synthetic biology, microfluidics, and science philosophy to develop together a reconstituted protometabolism within compartments consisting of coacervates, vesicles, coacervate containing vesicles, and compartments etched into microfluidic chips. The underlying protometabolism will be composed of triose glycolysis and a reverse citric acid cycle and will be regulated by (metallo)peptide catalysts. Importantly, the protometabolism will support the maintenance of the compartment that houses the protocell. The ESRs that primarily focus on the construction of compartments that mimic protocellular structures will gain firsthand experience in how their formulations could be exploited as drug delivery vehicles through secondments at partner organizations. Similarly, the ESRs that develop (metallo)peptide catalysts will apply their newfound skills to the development of drug molecules through a secondment at a company that specializes in metallodrug formulations. Ultimately, by becoming experts in elucidating the chemical underpinnings of all known living cells, the ESRs will be extremely well positioned to enter a wide variety of research fields from synthetic biology to medicinal chemistry in either industry or academia.

Status

SIGNED

Call topic

MSCA-ITN-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2018
MSCA-ITN-2018