BOULDERING | A Deep Learning approach for boulder detection –The key to understand planetary surfaces evolution and their crater statistics-based ages

Summary
Many planetary surfaces are heavily cratered as they witnessed the early stages of Solar System evolution during which impact cratering was a frequent process. Upon impact, rock fragments are ejected from the crater cavity and deposited elsewhere on the surface, where they potentially form secondary craters. The unknown contribution of secondary craters increase crater density and distort crater statistics, which ultimately biases the estimated age of a surface unit, a key diagnostics for understanding the evolution of planetary bodies.

The size and velocity distribution of the ejected rock fragments is a poorly understood aspect so that an important link between crater statistics and planetary surface age keeps missing. One way to close this connection is to make use of the population of boulders (meter-sized rocks) that can be detected on high-resolution images of planetary surfaces, such as the Moon’s. Boulders are the only remnants of the ejected materials and their size and shape as well as the terrain on which they are found provide important insight into the ejection mechanisms. BOULDERING aims to advance the detection of boulders on planetary surfaces from high-resolution imagery using deep learning and to compile size and shape distributions of boulder populations. Based on this, this project will boost our understanding of cratering records and the implications for planetary surface evolution.

A versatile automatic boulder detection algorithm will be developed using a convolutional neural network. This algorithm will first be validated on terrestrial boulder populations in Death Valley and the Mojave Desert and will then be trained with remote sensing data for application on the lunar and martian surfaces. By following this approach, ground data collected on Earth will be used to test the algorithm’s capacity to measure the sizes and shapes of boulders, which is key to make robust inferences on the boulder population on other planetary bodies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030364
Start date: 01-10-2021
End date: 13-01-2025
Total budget - Public funding: 284 345,28 Euro - 284 345,00 Euro
Cordis data

Original description

Many planetary surfaces are heavily cratered as they witnessed the early stages of Solar System evolution during which impact cratering was a frequent process. Upon impact, rock fragments are ejected from the crater cavity and deposited elsewhere on the surface, where they potentially form secondary craters. The unknown contribution of secondary craters increase crater density and distort crater statistics, which ultimately biases the estimated age of a surface unit, a key diagnostics for understanding the evolution of planetary bodies.

The size and velocity distribution of the ejected rock fragments is a poorly understood aspect so that an important link between crater statistics and planetary surface age keeps missing. One way to close this connection is to make use of the population of boulders (meter-sized rocks) that can be detected on high-resolution images of planetary surfaces, such as the Moon’s. Boulders are the only remnants of the ejected materials and their size and shape as well as the terrain on which they are found provide important insight into the ejection mechanisms. BOULDERING aims to advance the detection of boulders on planetary surfaces from high-resolution imagery using deep learning and to compile size and shape distributions of boulder populations. Based on this, this project will boost our understanding of cratering records and the implications for planetary surface evolution.

A versatile automatic boulder detection algorithm will be developed using a convolutional neural network. This algorithm will first be validated on terrestrial boulder populations in Death Valley and the Mojave Desert and will then be trained with remote sensing data for application on the lunar and martian surfaces. By following this approach, ground data collected on Earth will be used to test the algorithm’s capacity to measure the sizes and shapes of boulders, which is key to make robust inferences on the boulder population on other planetary bodies.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships