VitC | Structural studies of the full-length human Vitamin C transporters: unravelling Vitamin C transport across the membrane

Summary
SVCTs are Sodium-dependent Vitamin C Transporters, part of the large solute carrier protein family (SLC), and are the major carriers for Vitamin C uptake and regulation. Abnormal Vitamin C regulation has been associated with several diseases, including cancer, obesity, hypertension, autoimmune and neurodegenerative diseases. Furthermore, Vitamin C attenuates oxidative stress caused by alcohol consumption while continuous Vitamin C deficiency leads to scurvy. Despite their importance, Vitamin C uptake and regulation are poorly understood.

In humans, SVCTs include two important classes, SVCT1 and SVCT2, that belong to a family of membrane-embedded, phosphorylation-dependent glycoproteins with an overall 65% sequence identity. Specifically, SVCT1 is expressed on the epithelia of hepatic, intestinal and renal tissues, presenting low affinity and high capacity for Vitamin C, having an important role in regulation of whole body homeostasis. SVCT2, on the other hand, exhibits high affinity and low capacity, and is expressed in most cells and tissues where its function is the delivery of Vitamin C to cells as a cofactor for major enzyme pathways protecting from oxidative stress. To date, the structural basis for the mechanism of action of SVCTs remains largely unexplored.

Here, we aim at unraveling the mechanism of Vitamin C transport and regulation by determining the three-dimensional structures of both SVCT1 and SVCT2, thereby providing mechanistic understanding of the different activities of these transporters. We will use a multidisciplinary approach of high-resolution cryo-electron microscopy (Cryo-EM), X-ray crystallography and biophysical methods to understand SVCT function and interactions. This work will contribute to elucidating the mechanism of Vitamin C transport by SVCTs and may ultimately lead to drug discovery.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/795980
Start date: 01-04-2018
End date: 22-12-2020
Total budget - Public funding: 196 400,40 Euro - 196 400,00 Euro
Cordis data

Original description

SVCTs are Sodium-dependent Vitamin C Transporters, part of the large solute carrier protein family (SLC), and are the major carriers for Vitamin C uptake and regulation. Abnormal Vitamin C regulation has been associated with several diseases, including cancer, obesity, hypertension, autoimmune and neurodegenerative diseases. Furthermore, Vitamin C attenuates oxidative stress caused by alcohol consumption while continuous Vitamin C deficiency leads to scurvy. Despite their importance, Vitamin C uptake and regulation are poorly understood.

In humans, SVCTs include two important classes, SVCT1 and SVCT2, that belong to a family of membrane-embedded, phosphorylation-dependent glycoproteins with an overall 65% sequence identity. Specifically, SVCT1 is expressed on the epithelia of hepatic, intestinal and renal tissues, presenting low affinity and high capacity for Vitamin C, having an important role in regulation of whole body homeostasis. SVCT2, on the other hand, exhibits high affinity and low capacity, and is expressed in most cells and tissues where its function is the delivery of Vitamin C to cells as a cofactor for major enzyme pathways protecting from oxidative stress. To date, the structural basis for the mechanism of action of SVCTs remains largely unexplored.

Here, we aim at unraveling the mechanism of Vitamin C transport and regulation by determining the three-dimensional structures of both SVCT1 and SVCT2, thereby providing mechanistic understanding of the different activities of these transporters. We will use a multidisciplinary approach of high-resolution cryo-electron microscopy (Cryo-EM), X-ray crystallography and biophysical methods to understand SVCT function and interactions. This work will contribute to elucidating the mechanism of Vitamin C transport by SVCTs and may ultimately lead to drug discovery.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017