CASCADE-X | CO2 to light olefins conversion by cascade reactions over bifunctional nanocatalysts: an ‘all X-ray’ approach

Summary
In a waste-to-value perspective, CO2 can represent a sustainable carbon source to produce light olefins, representing key building blocks for petrochemical industry. CASCADE-X proposes an ultimate approach to directly convert CO2 to light olefins through cascade reactions over a bi-functional catalyst, obtained by molecular scale integration of an active metal alloy for the CO2-to-methanol reaction onto a zeotype catalyst for selective methanol-to-olefins conversion. Such a single-reactor cascade approach enables a simplified process scheme while overcoming the thermodynamic restrictions of the methanol synthesis by its sequential conversion. The action will generate fundamental knowledge on properties-performances relationships for the combined system, providing a rational for the optimization of catalyst and process conditions, as well as an improved understanding of key fundamental issues in both hydrogenation and methanol-to-olefins chemistry (restructuring, deactivation mechanisms, confinement effects). These goals will be pursued by an ‘all-X-ray’ approach, synergizing in situ and operando X-ray absorption spectroscopy and diffraction/scattering at the laboratory and large-scale facility level in combination with complementary physico-chemical methods, to identify activity/selectivity/stability descriptors for the bifunctional catalyst. Multi-modal synchrotron nano-mapping of individual catalyst particles will elucidate the space-resolved dynamics of restructuring and deactivation phenomena. Integrating the applicant’s experience in X-ray spectroscopy, the Host’s excellence in structural analysis, testing and rational optimization of zeotype catalysts, as well as the industrial know-how of the private sector partner (a leading Company in recycling and manufacturing precious metal catalysts, where a Secondment is planned), CASCADE-X provides a unique platform to diversify the proponent’s individual competences and to promote trans-sectoral knowledge transfer.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/793423
Start date: 01-07-2018
End date: 30-06-2020
Total budget - Public funding: 196 400,40 Euro - 196 400,00 Euro
Cordis data

Original description

In a waste-to-value perspective, CO2 can represent a sustainable carbon source to produce light olefins, representing key building blocks for petrochemical industry. CASCADE-X proposes an ultimate approach to directly convert CO2 to light olefins through cascade reactions over a bi-functional catalyst, obtained by molecular scale integration of an active metal alloy for the CO2-to-methanol reaction onto a zeotype catalyst for selective methanol-to-olefins conversion. Such a single-reactor cascade approach enables a simplified process scheme while overcoming the thermodynamic restrictions of the methanol synthesis by its sequential conversion. The action will generate fundamental knowledge on properties-performances relationships for the combined system, providing a rational for the optimization of catalyst and process conditions, as well as an improved understanding of key fundamental issues in both hydrogenation and methanol-to-olefins chemistry (restructuring, deactivation mechanisms, confinement effects). These goals will be pursued by an ‘all-X-ray’ approach, synergizing in situ and operando X-ray absorption spectroscopy and diffraction/scattering at the laboratory and large-scale facility level in combination with complementary physico-chemical methods, to identify activity/selectivity/stability descriptors for the bifunctional catalyst. Multi-modal synchrotron nano-mapping of individual catalyst particles will elucidate the space-resolved dynamics of restructuring and deactivation phenomena. Integrating the applicant’s experience in X-ray spectroscopy, the Host’s excellence in structural analysis, testing and rational optimization of zeotype catalysts, as well as the industrial know-how of the private sector partner (a leading Company in recycling and manufacturing precious metal catalysts, where a Secondment is planned), CASCADE-X provides a unique platform to diversify the proponent’s individual competences and to promote trans-sectoral knowledge transfer.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017