DENTALkeys | Evolution of human tooth enamel: unlocking hidden cell mechanisms

Summary
Understanding the ways in which we relate to our fossil ancestors is fundamental to elucidating how modern humans evolved. Yet, after a century of investigations, there is still no consensus about relationships among some members of the genus Homo. Studies of enamel thickness have been at the centre of these debates. Teeth preserve well in the fossil record and enamel thickness is a trait that can contribute to taxonomic classification. Yet, we know very little about the cell mechanisms that generate variation in enamel thickness. Several of our fossil ancestors have enamel that is of similar thickness, though it formed with very different underlying developmental processes. The goal in this interdisciplinary project is to combine 3D and 2D microtomography, histology, and theoretical biology to identify links between enamel growth and thickness to reveal novel traits in our fossil ancestors that will contribute new classification knowledge to our understanding of human evolution. I will examine modern day samples and fossil samples spanning the past 2 million years from the genus Homo. I will use the knowledge I gain to re-examine existing debates about which fossils are, or are not, ‘human-like’ to provide novel insights into their classification. Results will be of interest to anthropologists, human biologists, archaeologists, as well as the general public. My project will provide novel information about human growth and development that will also be of interest to clinicians.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101026776
Start date: 07-02-2022
End date: 14-06-2024
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

Understanding the ways in which we relate to our fossil ancestors is fundamental to elucidating how modern humans evolved. Yet, after a century of investigations, there is still no consensus about relationships among some members of the genus Homo. Studies of enamel thickness have been at the centre of these debates. Teeth preserve well in the fossil record and enamel thickness is a trait that can contribute to taxonomic classification. Yet, we know very little about the cell mechanisms that generate variation in enamel thickness. Several of our fossil ancestors have enamel that is of similar thickness, though it formed with very different underlying developmental processes. The goal in this interdisciplinary project is to combine 3D and 2D microtomography, histology, and theoretical biology to identify links between enamel growth and thickness to reveal novel traits in our fossil ancestors that will contribute new classification knowledge to our understanding of human evolution. I will examine modern day samples and fossil samples spanning the past 2 million years from the genus Homo. I will use the knowledge I gain to re-examine existing debates about which fossils are, or are not, ‘human-like’ to provide novel insights into their classification. Results will be of interest to anthropologists, human biologists, archaeologists, as well as the general public. My project will provide novel information about human growth and development that will also be of interest to clinicians.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships