SONAR | Localized Surface Plasmon Resonance in doped semiconductor nanocrystals

Summary
Doped semiconductor nanocrystals (dSNCs) are an exciting emerging material. Carrier densities in the range of 1020-1021cm-3 lead to localized surface plasmon resonances (LSPRs) in the near infrared (NIR). Prominent examples are copper chalcogenides, where doping occurs via vacancy formation, and metal oxides (MOs) that show plasmonic response due to impurity doping. Excitingly, both materials display post synthetic carrier density and LSPR tunability over a broad spectral range. Combined with layered two dimensional materials exciting manipulation options appear where the plasmon-exciton coupling or ‘hot’ carrier extraction enables local photo luminescence manipulation or tracking of local currents in a graphene based nano device. This active control over the LSPR allows active switching of the strength of coupling, useful also for the study of exciton-plasmon, plasmon-plasmon coupling, or plasmon induced ‘hot’ carrier extraction in nano-heterostructures. Ultralow doping allows the study of quantum plasmonics. Ultrafast photodoping, optical switching, active light manipulation or tunable NIR photon detection are additional exciting applications. While fundamental questions regarding the structure-properties relationship remain open to date the library of materials with such properties is enormous and not yet exhausted.
The project combines in a unique way expert scientists with complementary competences covering chemistry, physics, spectroscopy, microscopy, device design and theory among Europe and the US adding with their expert background to address the aforementioned topics of high impact in the field of plasmonic dSNCs. Networking activities, workshops and conferences will facilitate the sharing of knowledge. Long term research exchange will enable the acquisition of new skills. The formation of a large network among the institutes after a successful completion of the SONAR will enable the career development for research and innovation staff members.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/734690
Start date: 01-01-2017
End date: 31-12-2022
Total budget - Public funding: 936 000,00 Euro - 571 500,00 Euro
Cordis data

Original description

Doped semiconductor nanocrystals (dSNCs) are an exciting emerging material. Carrier densities in the range of 1020-1021cm-3 lead to localized surface plasmon resonances (LSPRs) in the near infrared (NIR). Prominent examples are copper chalcogenides, where doping occurs via vacancy formation, and metal oxides (MOs) that show plasmonic response due to impurity doping. Excitingly, both materials display post synthetic carrier density and LSPR tunability over a broad spectral range. Combined with layered two dimensional materials exciting manipulation options appear where the plasmon-exciton coupling or ‘hot’ carrier extraction enables local photo luminescence manipulation or tracking of local currents in a graphene based nano device. This active control over the LSPR allows active switching of the strength of coupling, useful also for the study of exciton-plasmon, plasmon-plasmon coupling, or plasmon induced ‘hot’ carrier extraction in nano-heterostructures. Ultralow doping allows the study of quantum plasmonics. Ultrafast photodoping, optical switching, active light manipulation or tunable NIR photon detection are additional exciting applications. While fundamental questions regarding the structure-properties relationship remain open to date the library of materials with such properties is enormous and not yet exhausted.
The project combines in a unique way expert scientists with complementary competences covering chemistry, physics, spectroscopy, microscopy, device design and theory among Europe and the US adding with their expert background to address the aforementioned topics of high impact in the field of plasmonic dSNCs. Networking activities, workshops and conferences will facilitate the sharing of knowledge. Long term research exchange will enable the acquisition of new skills. The formation of a large network among the institutes after a successful completion of the SONAR will enable the career development for research and innovation staff members.

Status

CLOSED

Call topic

MSCA-RISE-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2016
MSCA-RISE-2016