MicroNICHE | Microfluidic-assisted fabrication of artifical microniches for bone marrow stem cells

Summary
There is a growing interest in adult stem cells, especially from bone marrow, for regenerative medicine. Hematopoietic stem cells, a type of bone marrow stem cells, alone cannot be expanded in vitro; in vivo, they reside in a microenvironment known as a niche that maintains them in a quiescent state until prompted to differentiate. The stem cell niche provides structural and trophic support and the appropriate homeostasis to regulate stem cell function. Additionally to regulatory factors in these stem cell niches, a number of environmental and mechanical signals arising from the extracellular matrix are crucial regulators of stem cell fate. In order to expedite for basic studies of bone marrow stem cells, and further translational implementation, any realistic approach to the native stem cell niche requires: to engineer a biomimetic 3D-microenvironment, and then to develop artificial microniches with the key functional features reconstructed. High-throughput microfluidic technology offers high promise, however, adaptation to accommodate adult stem cells in artificially fabricated niches remains still a challenge. Microfluidic-assisted culture systems should not only allow maintaining cell homeostasis through biochemical and mechanical stimulation, but also modulating adult stem cell renewal and differentiation through microscale patterning of cells and extracellular materials in biomimetic microniches. This project aims at the microfluidic reconstruction of an artificial stem cell niches. In this proof-of-concept, a bone marrow stem cell microniche with tunable size, material and topography will be developed by integrating novel fabrication microfluidics with material engineering.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/705163
Start date: 01-07-2016
End date: 26-02-2020
Total budget - Public funding: 239 191,21 Euro - 239 191,00 Euro
Cordis data

Original description

There is a growing interest in adult stem cells, especially from bone marrow, for regenerative medicine. Hematopoietic stem cells, a type of bone marrow stem cells, alone cannot be expanded in vitro; in vivo, they reside in a microenvironment known as a niche that maintains them in a quiescent state until prompted to differentiate. The stem cell niche provides structural and trophic support and the appropriate homeostasis to regulate stem cell function. Additionally to regulatory factors in these stem cell niches, a number of environmental and mechanical signals arising from the extracellular matrix are crucial regulators of stem cell fate. In order to expedite for basic studies of bone marrow stem cells, and further translational implementation, any realistic approach to the native stem cell niche requires: to engineer a biomimetic 3D-microenvironment, and then to develop artificial microniches with the key functional features reconstructed. High-throughput microfluidic technology offers high promise, however, adaptation to accommodate adult stem cells in artificially fabricated niches remains still a challenge. Microfluidic-assisted culture systems should not only allow maintaining cell homeostasis through biochemical and mechanical stimulation, but also modulating adult stem cell renewal and differentiation through microscale patterning of cells and extracellular materials in biomimetic microniches. This project aims at the microfluidic reconstruction of an artificial stem cell niches. In this proof-of-concept, a bone marrow stem cell microniche with tunable size, material and topography will be developed by integrating novel fabrication microfluidics with material engineering.

Status

CLOSED

Call topic

MSCA-IF-2015-GF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-GF Marie Skłodowska-Curie Individual Fellowships (IF-GF)